Chapter 9

1. Locate the centroid ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$) of the area.

2. The steel plate is 0.3 m thick and has a mass density of $7850 \mathrm{~kg} / \mathrm{m}^{3}$.
a) Determine the location of its center of mass ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$).
b) Find the reaction at the pin A and roller support B.

3. Locate the centroid ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$) of the shaded area. set $\mathrm{a}=3, \mathrm{~h}=1$ and $\mathrm{n}=2$.

4. Locate the centroid \bar{y} of the beam's cross-section area.

5. a) Determine the location \bar{y} of the centroidal axis $x-x$ of the beam's cross-sectional area.
b) Determine the location \bar{y} of the center of mass if the beam has mass per unit length $\rho=12 \mathrm{~kg} / \mathrm{m}$ and the disk has the mass per area $\rho=25 \mathrm{~kg} / \mathrm{m}^{2}$.

6. Determine the location \bar{y} of the centroid of the beam's cross-section area.

Chapter 10

1. Determine the moment of inertia I_{x} and I_{y} of the beam's cross-sectional area about the centroidal x and y axes.

2. Continue problem 6 in chapter 9 . Determine the moment of inertia I_{x} of the cross-sectional area about the centroidal x and y axes.
3. Determine the moment of inertia of area I_{x}.
a) Find the centriod of area \bar{y} and calculate I_{x} about centroidal x ' axis.
b) Find the I_{x} about x axis.

4. The pendulum consists of two slender rods $A B$ and $O C$ which have a mass of $3 \mathrm{~kg} / \mathrm{m}$. The thin plate has a mass of $12 \mathrm{~kg} / \mathrm{m}^{2}$.
a) Determine the location \bar{y} of the center of mass G of the pendulum, then calculate the mass moment of inertia of the pendulum about z axis passing through G.
b) Calculate the mass moment of inertia about z axis passing the rotation center O .

