# 2.2 Linear <br> Functions: <br> Slope, Graphs, and Models <br> - Slope-Intercept Form of an <br> <br> Equation <br> <br> Equation <br> - Applications 

A function given by an equation of the form $f(x)=m x$ is a linear function. Its graph is a straight line passing through the origin.

The graph of $y=m x+b, b \neq 0$, is a line parallel to $y=m x$, passing through the point $(0, b)$.

The point $(0, b)$ is called the $y$-intercept.

## Slope

The slope of the line containing points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by
$m=\frac{\text { rise }}{\text { run }}=\frac{\text { vertical change }}{\text { horizontal change }}$ $=\frac{\text { the difference in } y}{\text { the difference in } x}$

$$
=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} .
$$



## Example Graph the line containing the points $(-4,5)$ and $(4,-1)$ and find the slope.

Solution

$$
\begin{aligned}
\text { Slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{\text { rise }}{\text { run }} \\
& =\frac{-1-5}{4-(-4)} \\
& =\frac{-6}{8} \\
& =-\frac{6}{8} \text {, or }-\frac{3}{4}
\end{aligned}
$$

Example Determine the slope of the line given by $y=\frac{2}{3} x-1$ and graph the line.

## Solution

$m=2 / 3$, so the slope is $2 / 3$.
We plot $(0,-1)$ and from there move up 2 units.
Then move to the right 3 units. This locates the point $(3,1)$.

Draw a line passing through
 the two points.

Example Find the slope and the $y$-intercept of each line whose equation is given.
a) $y=\frac{3}{8} x-2$
b) $3 x+y=7$
c) $4 x-5 y=10$

Solution
a) $y=\underbrace{\frac{3}{8} x-2}_{\text {The slope is }} \frac{3}{8}$. The $y$-intercept is $(0,-2)$.
b) We first solve for $y$ to find an equivalent form of

$$
\begin{aligned}
& y=m x+b \\
& \quad 3 x+y=7 \\
& \quad y=-3 x+7
\end{aligned}
$$

The slope is -3 . The $y$-intercept is $(0,7)$.

## Applications

Graphs allow us to visualize a rate of change. As a rule, the quantity listed in the numerator appears on the vertical axis and the quantity listed in the denominator appears on the horizontal axis.

## Example Wanda's Hair Salon has a graph displaying data from a recent day of work.

a) What rate can be determined from the graph?
b) What is that rate?

Solution
a) We can find the rate

Number of haircuts per hour.

b) $\frac{10 \text { haircuts }-2 \text { haircuts }}{5: 00-1: 00}=\frac{8 \text { haircuts }}{4 \text { hours }}=2$ haircuts per hour.

## Example

Swanton Electronics uses the function
$S(t)=-2500 t+12,500$ to determine the salvage value $S(t)$, in dollars, of a delivery van $t$ years after its purchase.
a) What do the numbers -2500 and 12,500 signify?
b) How long will it take the van to depreciate completely?
c) What is the domain of $S$ ?

## Solution $S(t)=-2500 t+12,500$

Drawing or at least visualizing the graph can be useful.
a) At time $t=0$, we have:

$$
\begin{aligned}
S(0) & =-2500(0)+12,500 \\
& =12,500
\end{aligned}
$$

The -2500 represents how much the van decreases in value from
 year to year.
The $\$ 12,500$, represents the initial value of the van.

## Solution $S(t)=-2500 t+12,500$

b) The van will completely depreciate in value when $\mathrm{S}(t)=0$.

$$
\begin{aligned}
S(t) & =-2500 t+12,500 \\
0 & =-2500 t+12,500 \\
-12,500 & =-2500 t \\
5 & =t
\end{aligned}
$$

In 5 years the van will have depreciated completely.

c) The domain cannot be negative and after 5 years the van will be depreciated completely.
Domain of $S$ is $\{t \mid 0 \leq t \leq 5\}$

