Math 103 - Section 9.3 - Logarithms

1. How are exponential functions and logarithmic functions related?
2. Write the definition of a logarithm.
3. Write in exponential form

a.	$\log _{2} 16=4$	b.	$\log _{1 / 3} 9=-2$
c.	$\log _{5} 625=4$	d. $\quad \log _{8} 2=\frac{1}{3}$	

4. Find each of the following logs

$\log _{3} 9=$	$\log _{3} 81=$
$\log _{5} 125=$	$\log _{\frac{1}{2}} 32=$
$\log _{7} \frac{1}{49}=$	$\log _{2} 128=$

5. What is a common \log ?

What do we mean by $\log 100$?
6. What is a natural \log ?

What do we mean by $\ln 5$?

Change Exponential Expressions to Logarithmic Expressions Change Logarithmic Expressions to Exponential Expressions

Exponential Form $3^{4}=81$	Logarithmic Form
	$\log _{5} 25=2$
$2^{-4}=\frac{1}{16}$	
	$\log _{4} 64=3$
	$\log 1000=3$
$e^{2}=7.389$	
	$\log x=2$
$e^{x}=2$	$\log _{2} x=3$
$7^{x}=15$	

Section 9.4

Evaluating Logarithms

1) $\log _{3} 9=\quad$ because
2) $\log _{2} 8=$
because
3) $\log _{8} 1=$ because
4) $\log _{6} 6=$ because
5) $\log _{16} 4=$ because
6) $\log _{3} \frac{1}{3}=$
because
7) $\log _{8} 2=$
because
8) $\log \frac{1}{1000}=$
because
9) $\log _{2} 2^{3}=$
because
10) $\log 10^{4}=$
because
11) $\ln e^{5}=$
because
12) $\ln e^{3.5}=$
because
13) $\log _{2}\left(\log _{3} 9\right)=$
14) $\log _{2}(\log 100)=$
15) Now answer each of the following:
$\log _{8} 1=$
$\log _{3} 1=$
a) $\quad \log 1=$
$\ln 1=$
$\log _{b} 1=$
$\ln e^{1.5}=$
$\ln e^{3}=$
c) $\quad \ln e^{-1}=$
$\ln e^{2.8}=$
$\ln e^{x}=$
$\log _{2} 2^{4}=$
$\log _{3} 3^{2}=$
$\log _{4} 4^{3}=$
$\log 10^{-1}=$
$\ln e^{3.1}$
$\log _{b} b^{x}=$

$$
10^{\log 1000}=
$$

g)

$$
10^{\log 10000}=
$$

$10^{\log 1.7}=$
$10^{\log x}=$
$\log _{8} 8=$
$\log _{3} 3=$
b) $\log 10=$
$\ln e=$
$\log _{b} b=$

$$
\begin{array}{r}
e^{\ln 2}= \\
\text { f) } e^{\ln 1.2}= \\
e^{\ln x}=
\end{array}
$$

$$
2^{\log _{2} 8}=
$$

$$
3^{\log _{3} 9}=
$$

h) $4^{\log _{4} 16}=$
$2^{\log _{2} 1.98}=$
$b^{\log _{b} x}=$

$$
\begin{aligned}
& \log 10^{4}= \\
& \log 10^{2}= \\
& \text { d) } \log 10^{3}= \\
& \log 10^{-1}= \\
& \log 10^{x}=
\end{aligned}
$$

