Name \qquad
-Solve the equation.

1) $5 x-(4 x-1)=2$
$5 x-4 x+1=2$

$$
x+1=2
$$

$$
x=1
$$

$$
\text { 2) }-6 x+7(2 x-3)=-5-8 x
$$

$$
-6 x+14 x-21=-5-8 x
$$

$$
8 x-21=-5-8 x
$$

Solve for the specified letter.

$$
\begin{aligned}
& 16 x-21=-5
\end{aligned} \Rightarrow 16 x=16
$$

3) $V=\frac{1}{3} B h$, for h

$$
3 V=B h \quad \Rightarrow=\frac{3 V}{B}
$$

Solve the problem.
4) Bill swims at a speed of 6.6 mph in still water. The river he's in flows at a speed of 5.7 mph . How long will it take Bill to swim 1.1 mi upstream? Round your answer to the nearest tenth of an hour, if necessary.

$$
\text { Speed }=\frac{\text { Distance }}{\text { time }} \Rightarrow \text { time }=\frac{\text { Distance }}{\text { peed }}=\frac{1.1}{(6.6-5.7)}=1.2 \text { Hows }
$$

Find the function value.
5) Find $f(2)$ when $f(x)=\frac{x-7}{5 x+6} . \quad f(2)=\frac{2-7}{10+6}=\frac{-5}{16}$
6) Find $g(a)-1 \quad$ when $g(x)=5 x-2$. (Please simplify your answer)

$$
g(a)-1=5 a-2-1=5 a-3
$$

7) Find $g(a-1)$ when $g(x)=5 x-4$. (Please simplify your answer)

$$
g(a-1)=5(a-1)-4=5 a-5-4=5 a-9
$$

Solve the problem.
8) The function h described $b y h(t)=-16 t^{2}+33.1 t+124.26$ gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.8 seconds after it is thrown.

$$
h(1.8)=-16(1.8)^{2}+33.1(1.8)+124.26=132 \text { feet }
$$

Find the rate of change. Use appropriate units. $\quad\left(t_{\text {ines }}^{\prime}(H R), D^{\prime} \mathbf{s}^{\prime}\right.$ once (miles)
Find the rate of change. Use appropriate units.
9)

$$
(0,0)
$$

$(5,23)$

$$
\text { Arg Rate f Change }=\frac{23-0}{5-0}=4.6 \mathrm{mph}
$$

Solve the problem.
10) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 400 feet. After $\mathbf{4 5}$ minutes the bell is at a depth of $\mathbf{1 3 0 0}$ feet. What is the average rate of lowering per minute?

$$
\begin{aligned}
& (8,4000) \\
& (45,1300)
\end{aligned}
$$

$$
\text { Arglete }=\frac{1300-400}{45-8}=24.32 \frac{\mathrm{ft}}{\mathrm{~min}}
$$

Solve for the specified letter.

1) $V=\frac{1}{3} \mathrm{Bh}$, for h

$$
3 V=B h \rightarrow h=\frac{3 V}{B}
$$

Solve the equation.

$$
\begin{aligned}
& \text { 2) } 9 x+4(-2 x-3)=-2-9 x \\
& 9 x-8 x-12=-2-9 x \\
& x-12=-2-9 x \quad 10 x=10 \\
& \underset{(3 x-1)=2}{+9 x+12}+12+9 x \Rightarrow x=1 \\
& 6 x-3 x+1=2 \\
& 3 x+1=2 \quad 3 x=1 \Rightarrow x=\frac{1}{3}
\end{aligned}
$$

Find the function value.
4) Find $g(a-1) \quad$ when $g(x)=5 x-2$. (Please simplify your answer)

$$
\begin{aligned}
g(a-1)=5(a-1)-2 & =5 a-5-2 \\
& =5 a-7
\end{aligned}
$$

5) Find $g(a)+1 \quad$ when $g(x)=5 x+4$. (Please simplify your answer)

$$
g(a)+1=5 a+4+1=5 a+5
$$

6) Find $f(-4)$ when $f(x)=\frac{x-4}{6 x+7}$

$$
f(-4)=\frac{-4-4}{6(-4)+7}=\frac{-8}{-24+7}=\frac{-8}{-17}=\frac{8}{17}
$$

Solve for the specified letter.

1) $V=\frac{1}{3} B h$, for h

$$
3 V=B h \rightarrow h=\frac{3 V}{B}
$$

Solve the equation.

$$
\begin{aligned}
9 x-8 x-12 & =-2-9 x \\
x-12 & =-2-9 x \\
+9 x+12 & +12+9 x
\end{aligned} \quad \Longrightarrow \quad 10 x=10
$$

Find the function value.
4) Find $g(a-1) \quad$ when $g(x)=5 x-2$. (Please simplify your answer)

$$
\begin{aligned}
g(a-1)=5(a-1)-2 & =5 a-5-2 \\
& =5 a-7
\end{aligned}
$$

5) Find $g(a)+1 \quad$ when $g(x)=5 x+4$. (Please simplify your answer)

$$
g(a)+1=5 a+4+1=5 a+5
$$

6) Find $f(-4)$ when $f(x)=\frac{x-4}{6 x+7}$

$$
f(-4)=\frac{-4-4}{6(-4)+7}=\frac{-8}{-24+7}=\frac{-8}{-17}=\frac{8}{17}
$$

7)

$$
\left(O_{\text {HR }}, O_{\text {miles }}\right)
$$

$$
\text { (} 5 \text { tres }, 25 \text { miles) }
$$

$$
\text { Rate f change }=\frac{25-0}{5-0}=\frac{25}{5}
$$

Solve the problem.

$$
=5 \mathrm{mph}
$$

8) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 500 feet. After 55 minutes the bell is at a depth of 1800 feet. What is the average rate of lowering per minute?
$(8,500) ;$
9) Bill swims at a speed of 6.7 mph in still water. The river hes in flows at a speed of 2.1 mph . How long will it take Bill to swim 1.7 mi upstream? Round your answer to the nearest tenth of an hour, if necessary.

$$
\begin{aligned}
\text { speed }=\frac{\text { Distance }}{\text { time }} \Rightarrow \text { time }=\frac{\text { Distance }}{\text { speed }}=\frac{1.7}{(.7-2.1)} & =0.369 \mathrm{HR} \\
& =0.4 \mathrm{HR}
\end{aligned}
$$

10) The function h described by $h(t)=-16 t^{2}+33.1 t+124.26$ gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.2 seconds after it is thrown.

$$
\begin{aligned}
h(1.2) & =-\frac{16(1.2)^{2}+33.1(1.2)+124.26}{} \\
& =140.94 \text { feet }
\end{aligned}
$$

Name \qquad Solutions

Solve the equation.

$$
\begin{aligned}
& \text { 1) } 5 x-(4 x-1)=2 \\
& 5 x-4 x+1=2 \\
& x+1=2 \\
& -1 \quad-1 \\
& \text { 2) }-6 x+7(2 x-3)=-5-8 x \\
& x=1 \\
& -6 x+14 x-21=-5-8 x \\
& 8 x-21=-5-8 x \\
& 16 x=16 \quad x=1
\end{aligned}
$$

Solve for the specified letter.
3) $V=\frac{1}{3} B h$, for h

$$
3 v=B h \Rightarrow h=\frac{3 v}{B}
$$

Solve the problem.
4) Bill swims at a speed of 6.6 mph in still water. The river he's in flows at a speed of 5.7 mph . How long will it take Bill to swim 1.1 mi upstream? Round your answer to the nearest tenth of an hour, if necessary.

$$
\text { time }=\frac{\text { Distance }}{\text { speed }}=\frac{1.1}{(6.6-5.7)}=1.2 \mathrm{HR}
$$

Find the function value.
5) Find $f(2)$ when $f(x)=\frac{x-7}{5 x+6}$.

$$
f(2)=\frac{2-7}{5(2)+6}=\frac{-5}{16}
$$

6) Find $g(a)-1 \quad$ when $g(x)=5 x-2$. (Please simplify your answer)

$$
g(a)-1=5 a-2-1=5 a-3
$$

7) Find $g(a-1) \quad$ when $g(x)=5 x-4$. (Please simplify your answer)

$$
g(a-1)=5(a-1)-4=5 a-5-4=5 a-9
$$

Solve the problem.
8) The function h described by $h(t)=-16 t^{2}+33.1 t+124.26$ gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.8 seconds after it is thrown.

$$
h(1.8)=-16(1.8)^{2}+33.1(1.8)+124.26=132 \text { feet }
$$

Find the rate of change. Use appropriate units.
9)

$$
\begin{aligned}
& (0,0) \\
& (5,22) \\
& m=\frac{22-0}{5-0}=4.4 \frac{\text { miles }}{H R}
\end{aligned}
$$

Solve the problem.
10) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 400 feet. After 45 minutes the bell is at a depth of 1300 feet. What is the average rate of lowering per minute?

$$
\begin{aligned}
& \left(8_{8,}^{\text {min }}, ~ 400\right) \\
& (45,1300 t
\end{aligned}
$$

$$
m=\frac{1300-400}{45-8}=24.32 \frac{\mathrm{fect}}{\mathrm{~min}}
$$

1) $7 x-(3 x-1)=2$

$$
\begin{aligned}
& 7 x-3 x+1=2 \\
& 4 x+1=2 \\
& 4 x=1 \quad \Rightarrow x=\frac{1}{4}
\end{aligned}
$$

2) $-8 x+4(-3 x-4)=-31-5 x$

$$
\begin{aligned}
& -8 x-12 x-16=-31-5 x \\
& -20 x-16=-31-5 x \\
& -15 x=-15 \quad \Longrightarrow \quad \Longrightarrow \quad \Longrightarrow \quad x
\end{aligned}
$$

Solve for the specified letter.
3) $V=\frac{1}{3} B h$, for h

$$
3 V=B h \Rightarrow h=\frac{3 V}{B}
$$

Solve the problem.
4) A deep sea diving bell is being lowered at a constant rate. After 10 minutes, the bell is at a depth of 600 feet.

$$
\begin{aligned}
& (10,600)^{\operatorname{mim}} \begin{array}{l}
\text { After } 50 \text { minutes the bell is at a depth of } 2000 \text { feet. What is the average rate of lowering per minute? } \\
(500
\end{array} \quad m=\frac{2000-600}{50-10}=\frac{1400}{40}=35 \frac{3+1}{\text { min }}
\end{aligned}
$$

5) Bill swims at a speed of 4.9 mph in still water. The river he's in flows at a speed of 2.7 mph . How long will it take Bill to swim 2.8 mi upstream? Round your answer to the nearest tenth of an hour, if necessary.

$$
\text { time }=\frac{\text { Distance }}{\text { speed }}=\frac{2.8 \text { miles }}{4.9-2.7 \mathrm{mph}}=1.3 \mathrm{HR}
$$

The function value.
6) Find $f(-4)$ when $f(x)=\frac{x-4}{7 x+3}$.

F

$$
f(-4)=\frac{-4-4}{7(-4)+3}=\frac{-8}{-25}=\frac{8}{25}
$$

7) Find $g(a+1) \quad$ when $g(x)=4 x+1$. (Please simplify your answer)

$$
g(a+1)=4 a+1)+1=4 a+5
$$

Solve the problem.
8) The function h described by $h(t)=-16 t^{2}+33.1 t+124.26$ gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.1 seconds after it is thrown.

$$
\begin{aligned}
h(1.1) & =-16(1.1)^{2}+32.1(1.1)+124.26 \\
& =141.31 \text { foo }
\end{aligned}
$$

rind the rate of change. Use appropriate units.

* 9)

$$
\begin{aligned}
& { }^{\log _{0} f y} \ldots \ldots(0,0) \\
& (5,21) \\
& m=\frac{21-0}{5-0}=4.2 \frac{\text { miles }}{H R}
\end{aligned}
$$

Find the function value.
10) Find $g(a)-1$ when $g(x)=5 x-5$. (Please simplify your answer)

$$
g(a)-1=5 a-5-1=5 a-6
$$

