| <del>- Dr. K</del> atiraie | MA103     | MA103 |  |
|----------------------------|-----------|-------|--|
| Namo                       | Solutione |       |  |

1) 5x - (4x - 1) = 2

-Solve the equation.

ŗ

$$5X - 4X + 1 = 2$$
  
 $X + 1 = 2$   $X = 1$ 

2) -6x + 7(2x - 3) = -5 - 8x

$$-6X + 14X - 21 = -5 - 8X$$
  

$$8X - 21 = -5 - 8X$$
  

$$16X - 21 = -5 \implies 16X = 16$$
  

$$7X = 10$$

Solve for the specified letter.

3) V = 
$$\frac{1}{3}$$
Bh, for h

$$3V = Bh \rightarrow h = \frac{3V}{B}$$

Solve the problem.

4) Bill swims at a speed of 6.6 mph in still water. The river he's in flows at a speed of 5.7 mph. How long will it take Bill to swim 1.1 mi upstream? Round your answer to the nearest tenth of an hour, if necessary.

Speed = 
$$\frac{\text{Distance}}{\text{time}} \implies \text{time} = \frac{\text{Distance}}{\text{speed}} = \frac{1 \cdot 1}{(6.6 - 5.7)} = 1.2$$
 Hours

Find the function value.

5) Find f(2) when 
$$f(x) = \frac{x-7}{5x+6}$$
.  $f(2) = \frac{2-7}{10+6} = \frac{-5}{16}$ 

6) Find when g(x) = 5x - 2. (Please simplify your answer) g(a)- 1

$$g(a) - 1 = 5a - 2 - 1 = 5a - 3$$

A-1

7) Find g(a - 1) when g(x) = 5x - 4.

(Please simplify your answer)

$$g(a-1) = 5(a-1) - 4 = 5a - 5 - 4 = 5a - 9$$

## Solve the problem.

8) The function h described by  $h(t) = -16t^2 + 33.1t + 124.26$  gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.8 seconds after it is thrown.

$$h(1.8) = -16(1.8)^{2} + 33.1(1.8) + 124.26 = 132$$
 feet



Number of Hours Spent Traveling

Solve the problem.

- 10) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 400 feet.
  - After 45 minutes the bell is at a depth of 1300 feet. What is the average rate of lowering per minute?

| min fast.   |                            |           |
|-------------|----------------------------|-----------|
| (8, 400)    | Arg Rate = 1300-400 = 24.3 | 32 ft min |
| (4), $(50)$ |                            |           |

Attraie MA103 me\_\_\_\_\_\_\_Solutions Solve for the specified letter. 1)  $V = \frac{1}{3}Bh$ , for h  $3V = Bh \rightarrow h = \frac{3V}{B}$ 

# Solve the equation.

2) 9x + 4(-2x - 3) = -2 - 9x



#### Find the function value.

4) Find g(a - 1) when g(x) = 5x - 2. (Please simplify your answer)

$$g(a-1) = 5(a-1) - 2 = 5a - 5 - 2$$
  
= 5a - 7

5) Find g(a)+1 when g(x) = 5x + 4. (Please simplify your answer)

$$g(a)+1 = 5a+4+1 = 5a+5$$

6) Find f(-4) when  $f(x) = \frac{x-4}{6x+7}$ .

$$f(-4) = \frac{-4-4}{6(-4)+7} = \frac{-8}{-24+7} = \frac{-8}{-17} = \frac{-8}{17}$$

Attiraie MA103  
me\_\_\_\_\_\_\_Solutions  
Solve for the specified letter.  
1) 
$$V = \frac{1}{3}Bh$$
, for h  
 $3V = Bh \rightarrow h = \frac{3V}{B}$ 

Solve the equation.

2) 9x + 4(-2x - 3) = -2 - 9x

$$\begin{array}{l} 9X - 8X - 12 = -2 - 9X \\ X - 12 = -2 - 9X \\ + 9X + 12 + 12 + 9X \\ 3) 6x - (3x - 1) = 2 \\ 6X - 3X + 1 = 2 \\ 3X + 1 = 2 \\ 3X + 1 = 2 \\ \end{array}$$

Find the function value.

4) Find g(a - 1) when g(x) = 5x - 2. (Please simplify your answer)

$$g(a-1) = 5(a-1) - 2 = 5a - 5 - 2$$
  
= 5a - 7

5) Find g(a)+1 when g(x) = 5x + 4. (Please simplify your answer)

$$g(a)+1 = 5a+4+1 = 5a+5$$

6) Find f(-4) when  $f(x) = \frac{x-4}{6x+7}$ .

$$f(-4) = \frac{-4-4}{6(-4)+7} = \frac{-8}{-24+7} = \frac{-8}{-17} = \frac{-8}{17}$$



Solve the problem.

(8

Ľ

8) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 500 feet.

speed = 
$$\frac{\text{Distance}}{\text{time}}$$
 =) time =  $\frac{\text{Distance}}{\text{speed}}$  =  $\frac{1.7}{(6.7-2.1)}$  = 0.369 HR  
= 0.4 HR

10) The function h described by  $h(t) = -16t^2 + 33.1t + 124.26$  gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.2 seconds after it is thrown.

$$h(1.2) = -16(1.2)^{2} + 33.1(1.2) + 124.26$$
  
= 140.94 feet

Dr. Katiraie

Name

Sol utions

Solve the equation. 1) 5x - (4x - 1) = 2 5x - 4x + 1 = 2 x + 1 = 2 -1 - 12) -6x + 7(2x - 3) = -5 - 8x -6x + 14x - 21 = -5 - 8x 8x - 21 = -5 - 8x 16x = 16Solve for the specified letter. 3)  $V = \frac{1}{3}Bh$ , for h 3v = Bh

Solve the problem.

4) Bill swims at a speed of 6.6 mph in still water. The river he's in flows at a speed of 5.7 mph. How long will it take Bill to swim 1.1 mi upstream? Round your answer to the nearest tenth of an hour, if necessary.

time = 
$$\frac{\text{Distance}}{\text{speed}} = \frac{1.1}{(6.6-5.7)} = 1.2 \text{ HR}$$

Find the function value.

5) Find f(2) when 
$$f(x) = \frac{x-7}{5x+6}$$
.  
 $f(2) = \frac{2-7}{5(2)+6} = \frac{-5}{16}$ 

6) Find g(a) - 1 when g(x) = 5x - 2. (Please simplify your answer)

$$g(a) - 1 = 5a - 2 - 1 = 5a - 3$$

∑⇒ C-I

7) Find g(a - 1) when g(x) = 5x - 4.

(Please simplify your answer)

$$g(a-1) = 5(a-1) - 4 = 5a - 5 - 4 = 5a - 9$$

# Solve the problem.

8) The function h described by h(t) = -16t<sup>2</sup> + 33.1t + 124.26 gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.8 seconds after it is thrown.

$$h(1.8) = -1((1.8)^2 + 33, 1(1.8) + 124.26 = 132$$
 feet

### Find the rate of change. Use appropriate units.



(0,0) (5,22)

 $m = \frac{22 - 0}{5 - 0}$ 

Solve the problem.

10) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 400 feet. After 45 minutes the bell is at a depth of 1300 feet. What is the average rate of lowering per minute?



Solve the equation.

íraie

**MA103** 

1) 
$$7x - (3x - 1) = 2$$
  
 $4x + 1 = 2$   
 $4x = 1 = 3$   
 $2) -8x + 4(-3x - 4) = -31 - 5x$   
 $-8x - 12x - 16 = -31 - 5x$   
 $-20x - 16 = -31 - 5x$   
 $-15x = -15$   
Solve for the specified letter.  
 $3) V = \frac{1}{3}Bh$ , for h

## Solve the problem.

4) A deep sea diving bell is being lowered at a constant rate. After 10 minutes, the bell is at a depth of 600 feet.

Б

After 50 minutes the bell is at a depth of 2000 feet. What is the average rate of lowering per minute?



5) Bill swims at a speed of 4.9 mph in still water. The river he's in flows at a speed of 2.7 mph. How long will it take Bill to swim 2.8 mi upstream? Round your answer to the nearest tenth of an hour, if necessary.

 $D^{-1}$ 

he function value.

6) Find f(-4) when  $f(x) = \frac{x-4}{7x+3}$ .

$$f(-4) = \frac{-4-4}{7(-4)+3} = \frac{-8}{-25} = \frac{8}{25}$$

7) Find g(a + 1) when g(x) = 4x + 1. (Please simplify your answer)

$$g(a+1) = 4(a+1) + 1 = 4(a+5)$$

# Solve the problem.

8) The function h described by  $h(t) = -16t^2 + 33.1t + 124.26$  gives the height of a ball thrown upward with a speed of 33.1 feet per second from a 124.26 ft high window t seconds after it is thrown until it hits the ground. Find the height of the ball 1.1 seconds after it is thrown.

$$h(1.1) = -16(1.1)^{6} + 33.1(1.1) + 124.26$$
  
= 141.31 feet

Find the rate of change. Use appropriate units.



Number of Hours Spent Traveling



10) Find g(a)-1

when g(x) = 5x - 5. (Please simplify your answer)



D-2