Professor Katiraie MA 103 Spring 2007 Test 1A (Chapters 1, 2, and 3)
Name \qquad (1 POINT)
Total Possible Points $=200$ Points

Note: Show all work. Unless a problem is marked with an asterisk (*), use a calculator only to check.
When asked for the equation of a line, the equation should be given in slope-intercept form.

1. Simplify: $\left(\frac{x^{-3} y^{7} z^{-2}}{x^{-5} y z^{4}}\right)^{3}$ (Assume no variables are equal to zero.)
(Must Show Procedure)
2. Simplify: (Assume no variables are equal to zero.) (Must Show Procedure)
(9 points)
a. $\frac{24 x^{-5} y^{-8} z^{2}}{3 x y^{-5}}$
b. $\left(3 y z^{-2}\right)^{-3}$
c. $\left(\frac{15 x^{4} y^{-7}}{10 x^{-2} y^{-4}}\right)^{-3}$
*3. If $S=2 \pi r h+2 \pi r^{2}$
Evaluate S if $\mathrm{r}=5 \mathrm{~cm}$, and $\mathrm{h}=2 \mathrm{~cm}$
*4. Evaluate with your calculator and answer the following
a. $\frac{-8 \pm \sqrt{8^{2}-4(3)(2)}}{2(3)}$
b. $5332.01\left(1+\frac{.035}{12}\right)^{12(8)}$ Assume this is a calculation involving money.
3. Let $g(x)=-2 x^{2}+7 x+7$ and $f(x)=4 x-17$
(9 points)
a. Find $f(4)$
b. Find $g(-3)$
c. Find x when $f(x)=6$
*6. If $y=-2 x^{3}+3 x+10$ use your calculator (10 points)
a) Find the x-intercept
b) Find the y-intercept
4. For each representation of a relation below, write " N " if it is not a function and " F " if it is a function.
(10 points)

Relation	Relation	b	Relation		c	Relation	
x	y	x	y	x	y	x	y
1	1	1	4	2	0	1	0
2	2	2	3	2	2	2	2
3	2	3	2	-6	-8	3	2
4	5	2	1	4	9	4	3

8. Write an equation of the line that passes through $(1,4)$ and is parallel to the line passing through the points $(3,-6)$ and $(-1,2)$.
9. On the graph below, graph the lines given in the xy-plane. Draw an appropriate axis and label the graph with an appropriate scale. Label each graph with the appropriate letter, a, b, or c .
(10 points)
a. $y=\frac{2}{3} x-3$
b. $y=-2$
c. $x=4$

10. Find the equation of a line passing through $(-9,-3)$ and $(4,10)$ (10 points) (Must Show Procedure)
11. The graph below is a graph of $f(x)$.
a. Find the approximate value of $f(-4)$
b. Find the approximate values of x so that $f(x) \cong 4.5$

12. Find the equation of a line perpendicular to $y=-4 x+7$ and passing through $(-4,-2)$ (Must Show Procedure)
(10 points)
13. Find the equation of a line parallel to $-2 x-5 y=10$ and passing through $(4,-2)$ (Must Show Procedure)
14. Find the equation of the line shown below on the graph.

15. The monthly fees for a condo association can be modeled by the following formula: $f(x)=42 x+100 \quad$ where x is the number of years since the condo association was built in 1990 .
*a. What were the monthly fees in 2002 ?
b. Determine the year when the monthly fees were $\$ 478$?
c. Interpret the slope as a rate of change.
(12 points)
16. Solve the following algebraically $\frac{3-5 x}{5}=\frac{1}{2} x+7$

(Must Show Procedure)

(12 points)
17. Solve algebraically. Show all steps.
a) $\begin{aligned} & x^{2}-y=-4 \\ & 3 x^{2}-y=2\end{aligned}$
b) $\begin{aligned} 2 x-6 y & =-4 \\ 5 x-7 y & =-4\end{aligned}$
(16 points)
((Must Show Procedure)
18. Solve the following inequalities. Write your answer in interval notation.
a) $\quad-\frac{5}{2} x+\frac{1}{3} \leq 2$
b) $\quad 3.1(3-2 x) \leq-2.9 x$
19. In 1990 a bus company had 30 busses; in 1995 the company had 345 busses. Let $\mathrm{f}(\mathrm{t})$ represents the number of busses t years after 1990 .
Assume $f(t)$ is a linear function.
a. Find the slope of $f(t)$, and state what the slope represents in terms of the story?
b. Use your slope and one ordered pair to write the equation for $f(t)$.
c. Predict the number of busses in the year 2007.
d. Determine the year when number of busses will be 1290.

