\qquad (1 Point)
Total Possible Points $=200$ Points

Note: Show all work. Unless a problem is marked with an asterisk (*), use a calculator only to check.
When asked for the equation of a line, the equation should be given in slope-intercept form.

1. Simplify: $\left(\frac{x^{-3} y^{7} z^{-2}}{x^{-5} y z^{-4}}\right)^{-3}$ (Assume no variables are equal to zero.)
2. Let $g(x)=x^{2}+7 x+6$ and $f(x)=\frac{1}{2} x+20$
a. Find x when $f(x)=6$
b. Find x when $g(x)=0$
c. Find $f(4)+g(0)$
3. Write an equation of the line that passes through $(1,4)$ and is parallel to the line passing through the points $(3,-6)$ and $(-1,2)$.
(10 points)
4. The monthly fees for a condo association can be modeled by the following formula: $f(x)=42 x+100 \quad$ where x is the number of years since the condo association was built in 1985. (Must Show Procedure) (10 points)
*a. What were the monthly fees in 2002?
b. Determine the year when the monthly fees were $\$ 478$?
c. Interpret the slope as a rate of change.
5. Find the equation of the line shown below on the graph.
(8 points) (Must Show Procedure)

6. Find the equation of a line perpendicular to $y=-3 x+7$ and passing through $(-4,-2)$ (Must Show Procedure)
7. Solve the following system of equations using Elimination method.
(10 points)

$$
\left\{\begin{array}{l}
2 x+3 y=6 \\
x-2 y=-4
\end{array}\right.
$$

8. A student takes out two loans to help pay for college. One loan is at 11% simple interest, and the other is at 7% simple interest. The total amount borrowed is $\$ 4000$, and the interest after 1 year for both loans is $\$ 380$. Find the amount of each loan.
(10 points)
9. A 10 -foot wide sidewalk around a rectangular swimming pool has a total area of 2400 square feet. Find the dimensions of the swimming pool if the pool is 20 feet longer than it is wide.
10. PERFORM THE OPERATION \& SIMPLIFY:
a. $\frac{3}{6 x^{2}}-\frac{4}{21 x^{7}}$
b. $\frac{4}{x^{2}+3 x}-\frac{1}{x^{2}+7 x+12}$
11. SOLVE FOR X: $\frac{x}{x+2}+\frac{7}{x-6}=\frac{14}{x^{2}-4 x-12}$
12. SOLVE FOR X: Check for extraneous solutions.

$$
\frac{12}{x-5}-\frac{3}{x-2}=\frac{5}{x-2}
$$

13. A vending machine will only accept quarters and dimes. When the coins are collected, the machine has 226 coins worth $\$ 24.10$. How many quarters were there? How many dimes? Show your work!
(10 points)
14. CONVERSIONS FROM EXPONENTIAL FORM TO RADICAL FORM AND VICE VERSA:

$$
\begin{array}{ll}
a^{m / n}=\left(a^{1 / n}\right)^{m}=\sqrt[n]{a^{m}} & \sqrt{a b}=\sqrt{a} \sqrt{b} \\
x^{m} \bullet x^{n}=x^{m+n} & \frac{x^{m}}{x^{n}}=x^{m-n} \\
\left(x^{m}\right)^{n}=x^{m n} & x^{-m}=\frac{1}{x^{m}}
\end{array}
$$

Simplify the following:

(14 points)
A. $\sqrt[3]{-64}$
B. $\sqrt{72 x^{18}}$
C. $\left(\frac{x^{6}}{27}\right)^{\frac{2}{3}}$
D. $\sqrt{(x+7)^{21}}$
E. $\sqrt{\sqrt{y}}$
F. $\sqrt{72 x^{8} y^{5}}$
G. $\left(x^{2} y^{8}\right)^{\frac{1}{2}}$
15. State the domain of the following functions.
(10 points)
Write your answer in set-builder notation:
a) $\quad g(x)=\frac{1}{x^{2}+81}$
b) $\quad f(x)=\frac{1}{3 x-2}$
c) $\quad h(x)=\frac{1}{x^{2}-9}$
d) $f(x)=\frac{x^{2}-3 x+2}{x}$
16. Solve the following rational equations
a) $\frac{x}{x+2}=\frac{4}{x-3}$
b) $\frac{5}{t-1}+\frac{2}{t+2}=\frac{15}{t^{2}+t-2}$
17. Perform the operation and Simplify the following expressions:
a) $\frac{x^{2}+3 x+2}{2 x+2} \div \frac{-2 x-4}{x+1}$
b) $\frac{x^{2}+4}{x^{2}-4} \cdot \frac{x-2}{x+2}$
18. Perform the operation and Simplify the following expression expressions:
(7.5 Points Each)
a) $\frac{2}{t+2}-\frac{t}{t^{2}-4}$
b) $\frac{x}{x-3}-\frac{2 x}{x+4}$

