MA 103 CHAPTER 9: LOGARITHMIC FUNCTIONS SECTION 9.1: INVERSE FUNCTIONS

The following table gives values of a function f(x) for six inputs 0, 1, 2, 3, 4, and 5.

Х	f(x)
0	12
1	4
2	3
3	10
4	0
5	8

Read the table to find:

1.	f(4) =	2.	f(0) =
3.	f(2) =	4.	f(5) =

The inverse of f, written f⁻¹, and read "f inverse" sends outputs of f to inputs of f.

For example: f sends 5 to 8 and f⁻¹ sends 8 to 5. The statement f(5) = 8 and f⁻¹(8) = 5 are **equivalent**. (See bottom p.203)

Find:

5. $f^{-1}(10) =$ _____ 6. $f^{-1}(0) =$ _____ 7a. $f^{-1}(3) =$ _____ 7b. $f^{-1}(12) =$ _____

Note: f⁻¹ "undoes" f.

8. The inverse of a function is not necessarily a function. For example, $g(x) = x^2$ is a function. We know that g(2) = 4 and g(-2) = 4. However, how do we answer $g^{-1}(4)$?

Note:

9. **Invertible functions:** When the inverse of a function, f, is also a function, we say that f is invertible. f and f^{-1} are inverse functions of each other. In general, linear functions of the form y = mx + b with $m \neq 0$, are invertible. Futhermore, only functions that are **one-to-one** are invertible. A function is one-to-one if each output is used only once. A one-to-one function will pass both the vertical line test and the horizontal line test.

Recall $g(x) = x^2$, which is sketched to the right. g passes the vertical line test, but fails the horizontal line test. g is a function, but not a one-to-one function. g is not invertible.

10. **Graphing an inverse function.**

For f(x) = 3x + 2, complete the table.

х	f(x)	Х	f ⁻¹ (x)
-2		-4	
-1		-1	
0		2	
1		5	
2		8	

11a. **Reflection Property:** For an invertible function f, the graph of f⁻¹ is the reflection of the graph of f across the line y = x.

11b. Finding the inverse equation of a function.

f(x) = x - 3 (f(x) subtracts 3 from x, then f⁻¹(x) should add 3 to x to "undo" f.)

$$f^{-1}(x) = x + 3$$

 $g(x) = \frac{x}{4}$ (g(x) divides x by 4, then g⁻¹(x) should multiply x by 4 to "undo" g.)

$$g^{-1}(x) = 4x$$

Note: To check $g^{-1}(x)$, graph g and $g^{-1}(x)$ to see if they are reflections of each other about the line y = x. **DRAW** the functions.

FINDING THE INVERSE FUNCTION OF A LINEAR FUNCTION ALGEBRACIALLY:

(Four-Step Process, Please See page 606 of our textbook)

We Want to Find the Inverse Function of	Now You Try to Find the Inverse Function of
f(x) = x - 3	g(x) = 2x + 5
STEP 1 : Replace f(x) with y	
y = x - 3	
STEP 2 : Now, Solve for x	
x-3 = y	
x = y + 3	
STEP 3 : Replace x with f ⁻¹ (y)	
$f^{-1}(y) = y + 3$	
STEP 4 : Write in terms of x	
$f^{-1}(x) = x + 3$	

12. Making interpretations using the inverse function.

Let n = f(t) = .25 t - 1.67 represent the number of people (in millions) undergoing laser eye surgery in the year that is t years since 1990.

- A. Find & interpret f(10).
- B. Find an equation for f^{-1} .
- C. Find & interpret f^{-1} (3).
- D. What is the slope of f^{-1} ? What does it mean in the context of this problem?