MA 103 CHAPTER 9: LOGARITHMIC FUNCTIONS SECTION 9.1: INVERSE FUNCTIONS

The following table gives values of a function $f(x)$ for six inputs $0,1,2,3,4$, and 5 .

x	$f(x)$
0	12
1	4
2	3
3	10
4	0
5	8

Read the table to find:

1. $\mathrm{f}(4)=$ \qquad
2. $f(0)=$ \qquad
3. $f(2)=$ \qquad
4. $f(5)=$ \qquad

The inverse of f, written f^{-1}, and read " f inverse" sends outputs of f to inputs of f.
For example: f sends 5 to 8 and f^{-1} sends 8 to 5 .
The statement $f(5)=8$ and $f^{-1}(8)=5$ are equivalent. (See bottom p.203)
Find:
\qquad
5. $f^{-1}(10)=$

7a. $f^{-1}(3)=$ \qquad
6. $f^{-1}(0)=$ \qquad
7b. $f^{-1}(12)=$ \qquad

Note: $\mathbf{f}^{\mathbf{- 1}}$ "undoes" \mathbf{f}.

8. The inverse of a function is not necessarily a function. For example, $g(x)=x^{2}$ is a function. We know that $g(2)=4$ and $g(-2)=4$. However, how do we answer $g^{-1}(4) ?$

Note:

9. Invertible functions: When the inverse of a function, f , is also a function, we say that f is invertible. f and f^{-1} are inverse functions of each other. In general, linear functions of the form $y=m x+b$ with $m \neq 0$, are invertible. Futhermore, only functions that are one-to-one are invertible. A function is one-to-one if each output is used only once. A one-to-one function will pass both the vertical line test and the horizontal line test.

Recall $g(x)=x^{2}$, which is sketched to the right. g passes the vertical line test, but fails the horizontal line test. g is a function, but not a one-to-one function. g is not invertible.

10. Graphing an inverse function.

For $f(x)=3 x+2$, complete the table.
axes scaled by 2

x	$f(x)$	x	$f^{-1}(x)$
-2		-4	
-1		-1	
0		2	
1		5	
2		8	

11a. Reflection Property: For an invertible function f, the graph of f^{-1} is the reflection of the graph of f across the line $y=x$.

11b. Finding the inverse equation of a function.
$f(x)=x-3 \quad\left(f(x)\right.$ subtracts 3 from x, then $f^{-1}(x)$ should add 3 to x to "undo" f.)

$$
f^{-1}(x)=x+3
$$

$g(x)=\frac{x}{4} \quad\left(g(x)\right.$ divides x by 4 , then $g^{-1}(x)$ should multiply \mathbf{x} by 4 to "undo" $\left.g.\right)$

$$
g^{-1}(x)=4 x
$$

Note: To check $\mathbf{g}^{-1}(x)$, graph \mathbf{g} and $\mathbf{g}^{-1}(x)$ to see if they are reflections of each other about the line $y=x . * *$ DRAW $* *$ the functions.
(Four-Step Process, Please See page 606 of our textbook)

We Want to Find the Inverse Function of $\mathbf{f (x)}=\mathbf{x}-\mathbf{3}$	Now You Try to Find the Inverse Function of
STEP 1: Replace $\mathrm{f}(\mathrm{x})$ with y	$\mathbf{g (x)}=\mathbf{2 x + 5}$
$\mathrm{y}=\mathrm{x}-3$	
STEP 2: Now, Solve for x	
$\mathrm{x}-3=\mathrm{y}$	
$\mathrm{x}=\mathrm{y}+3$	
STEP 3: Replace x with $\mathrm{f}^{-1}(\mathrm{y})$	
$\mathrm{f}^{-1}(\mathrm{y})=\mathrm{y}+3$	
STEP 4: Write in terms of x	
$\mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}+3$	

12. Making interpretations using the inverse function.

Let $n=f(t)=.25 t-1.67$ represent the number of people (in millions) undergoing laser eye surgery in the year that is tyears since 1990.
A. Find \& interpret $f(10)$.
B. Find an equation for f^{-1}.
C. Find \& interpret $\mathrm{f}^{-1}(3)$.
D. What is the slope of f^{-1} ? What does it mean in the context of this problem?

