MA 103 CHAPTER 9: SECTION 9.4 PROPERTIES OF LOGARITHMS
In Section 9.2 we discovered that for $\mathrm{b}>0$ and $\mathrm{b} \neq 1$, and $\mathrm{a}>0$.

1. $\log _{\mathrm{b}} \mathrm{b}=1$
2. $\log _{\mathrm{b}} 1=0$
3. $\log _{\mathrm{b}}(\mathrm{a})=\mathrm{c}$ is equivalent to $\mathrm{b}^{\mathrm{c}}=\mathrm{a}$
4. WRITE THE EXPONENTIAL FORM FOR
A. $\quad \log _{4} 64=3$
B. $\quad \log _{\mathrm{k}} \mathrm{m}=\mathrm{n}$
5. WRITE THE LOGARITHMIC FORM FOR
A. $3^{2}=9$
B. $p^{q}=r$
6. POWER PROPERTY FOR LOGARITHMS
A. Does $\log _{3} 3^{2}=2 \log _{3} 3$?
B. Does $\log _{7} 7^{4}=4 \log _{7} 7$?
C. Use a calculator table to compare values for $f(x)=\log \left(x^{3}\right)$ and $g(x)=3 \log (x)$.
D. Can you guess the power property: $\log \left(x^{p}\right)=$ \qquad ?

7. THE COMMON AND NATURAL LOGARITHMS

Note: $\log _{2} 64=6$ while $\log _{4} 64=3$, obviously the answer to a logarithm of a number n will differ depending upon the base of the logarithm. Thus, you can't evaluate $\log _{\mathrm{b}} \mathrm{n}$ using any other log base except for b .

Your calculator has two logarithmic buttons:
\log for $\log _{10}$ Referred to as the common log
In for $\log \mathrm{e} \quad$ Referred to as the natural \log
(e is an irrational number which can be approximated by $\mathrm{e}=2.7183$) (p.239)
$\log (a)=c$ and $10^{c}=a$ are equivalent
In (a) $=\mathrm{c}$ and $\mathrm{e}^{\mathrm{c}}=\mathrm{a}$ are equivalent
Either of these logs can be used to solve exponential equations.
8. USING THE POWER PROPERTY TO SOLVE EXPONENTIAL EQUATIONS:
A. $\quad 2^{x}=24$
B. $3^{7 x+1}+7=50$
C. $5^{x}+9=40-3\left(5^{x}\right)$
D. $20=-3+4\left(2^{x}\right)$

9. MISUSE OF THE POWER PROPERTY

It is true that $\log _{b}\left(x^{p}\right)=p \log _{b}(x)$.
Only one of the following statements is true, which one is it?
(1) $\quad \log _{\mathrm{b}}\left[\mathrm{a}\left(\mathrm{x}^{\mathrm{p}}\right)\right]=\mathrm{p} \log _{\mathrm{b}}(\mathrm{ax})$
(2) $\log _{\mathrm{b}}\left[(\mathrm{ax})^{\mathrm{p}}\right]=\mathrm{p} \log _{\mathrm{b}}(\mathrm{ax})$

Let $b=10, a=10, x=10$ and $p=2$ and see if the result agrees with your guess.

10. SOLVING LOGARITHMIC EQUATIONS

A. $\quad \log _{8} x=1 / 3$
B. $\quad \log _{5}(4 x+1)=3$
C. $\quad \log _{\mathrm{b}}(80)=7$
D. $\quad \log _{\mathrm{b}}(16)=2$

