MA 103 CHAPTER 9: SECTION 9.4 PROPERTIES OF LOGARITHMS

In Section 9.2 we discovered that for b > 0 and $b \neq 1$, and a > 0.

- 1. $\log_{b} b = 1$
- 2. $\log_{b} 1 = 0$
- 3. $\log_{b}(a) = c$ is equivalent to $b^{c} = a$
- 4. WRITE THE EXPONENTIAL FORM FOR
 - A. $\log_4 64 = 3$ B. $\log_k m = n$

5. WRITE THE LOGARITHMIC FORM FOR

A. $3^2 = 9$ B. $p^q = r$

6. POWER PROPERTY FOR LOGARITHMS

- A. Does $\log_3 3^2 = 2 \log_3 3^2$
- B. Does $\log_7 7^4 = 4 \log_7 7^2$
- C. Use a calculator table to compare values for $f(x) = \log (x^3)$ and $g(x) = 3 \log (x)$.

D. Can you guess the power property: $\log (x^p) =$ ____?

7. THE COMMON AND NATURAL LOGARITHMS

Note: $\log_2 64 = 6$ while $\log_4 64 = 3$, obviously the answer to a logarithm of a number n will differ depending upon the base of the logarithm. Thus, you can't evaluate $\log_b n$ using any other log base except for b.

Your calculator has two logarithmic buttons:

log for log 10 Referred to as the common log

In for log _e Referred to as the natural log

(e is an irrational number which can be approximated by e = 2.7183) (p. 239)

log (a) = c and 10^{c} = a are equivalent

In (a) = c and e^{c} = a are equivalent

Either of these logs can be used to solve exponential equations.

8. USING THE POWER PROPERTY TO SOLVE EXPONENTIAL EQUATIONS:

A.
$$2^{x} = 24$$
 B. $3^{7x+1} + 7 = 50$

C.
$$5^{x} + 9 = 40 - 3(5^{x})$$
 D. $20 = -3 + 4(2^{x})$

9. MISUSE OF THE POWER PROPERTY

It is true that $\log_{b} (x^{p}) = p \log_{b} (x)$.

Only one of the following statements is true, which one is it?

- (1) $\log_{b} [a(x^{p})] = p \log_{b} (ax)$
- (2) $\log_{b} [(ax)^{p}] = p \log_{b} (ax)$

Let b = 10, a = 10, x = 10 and p = 2 and see if the result agrees with your guess.

10. SOLVING LOGARITHMIC EQUATIONS

A. $\log_8 x = 1/3$ B. $\log_5 (4x + 1) = 3$

C.
$$\log_{b}(80) = 7$$
 D. $\log_{b}(16) = 2$