MA 103 More about Quadratic Functions Section 8.7

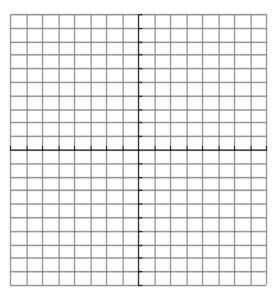
I. When a quadratic function is in standard form $f(x) = ax^2 + bx + c$, it can be put into vertex form $f(x) = a(x-h)^2 + k$ using the method of *completing the square* that was shown in class. You will be expected to be able to do this for quadratic functions in which a = 1.

1.													
(a)	Complete the square to put this function into vertex form												
(b)	State the direction of opening.												
(c)	State the coordinates of the vertex.												
(d)	Find the y-intercept.												I
											\pm		
(e)	Sketch the graph. DO										\pm		
NOT USE YOUR			\vdash	+-		+	-	-			+		
CAL	CULATOR.			-		-					+		
				-		-							
				-		-	_					_	
				+		+					\mp		
				+							\downarrow		
											\pm		
(f)	State the domain										\pm		
(-)													
(g)	State the range												

II. A quadratic function in standard form $y = f(x) = ax^2 + bx + c$, where a, b, and c are real numbers and $a \neq 0$ is always a parabola which opens upward if a > 0 and downward if a < 0.

The vertex or turning point of the parabola occurs when $x = -\frac{b}{2a}$ and $y = f(-\frac{b}{2a})$.

The **axis of symmetry** is the vertical line through the vertex. Its equation is $x = -\frac{b}{2a}$.


The **y-intercept** occurs when x = 0. To find it, substitute x = 0 into the equation and find the corresponding value of y.

The x-intercepts occur when y = 0. To find the x-intercepts, set $y = f(x) = ax^2 + bx + c = 0$ and solve for x by factoring or by using the quadratic formula.

- $f(x) = 2x^2 5x 3$ 2. Find the coordinates of the vertex. (a) (b) State the direction of opening. Find the y-intercept. (c) (d) Find the x-intercepts Sketch the graph (e)
- f) State whether the function has a maximum or a minimum value and find that maximum or minimum.

3. $h(x) = -3x^2 + 18x + 11$

- (a) Find the coordinates of the vertex.
- (b) State the direction of opening .
- (c) Find the y-intercept.
- (d) Find the x-intercepts

(e) Sketch the graph.

(f) State whether the function has a maximum or a minimum value and find that maximum or minimum.