MATH096 Section 4.1

Interval Notation

We have already used set-builder notation to express an interval or intervals on the real number line. Another way to express intervals is by using **interval notation**. In interval notation, brackets indicate that the endpoints of the interval <u>are</u> included, and parentheses indicate that the endpoints are <u>not</u> included. The following chart shows how these are used.

Graph		Graph	Set-builder Notation	Interval Notation	Type of Interval
¢	e a	<u>→</u> b	$\left\{x \middle a \le x \le b\right\}$	[<i>a</i> , <i>b</i>]	Closed interval
\downarrow	(a	b	$\left\{ x \middle a < x < b \right\}$	(<i>a</i> , <i>b</i>)	Open interval
\downarrow	(a	\rightarrow b	$\left\{ x \middle a < x \le b \right\}$	(a,b]	Half-open interval
¢	e a	\rightarrow b	$\left\{ x \middle a \le x < b \right\}$	[a,b)	Half-open interval
•	l a		$\left\{x \middle x \ge a\right\}$	$[a,\infty)$	Infinite interval
┥	(a		$\{x x > a\}$	(a,∞)	Infinite interval
+		→ → b	$\left\{ x \middle x \le b \right\}$	$(-\infty,b]$	Infinite interval
+		→ > > b	$\left\{ x \middle x < b \right\}$	$(-\infty,b)$	Infinite interval

The notation $(-\infty, \infty)$ is used to represent the entire real number line, that is, all real numbers.

1. A portion of the real number system is represented in each problem using a graph, setbuilder notation, or interval notation. Re-express each interval in the two alternative representations.

	Graph	Set-builder notation	Interval Notation
(a)			
		$\left\{x\middle -3\le x\le 1\right\}$	
(b)			
, ,)X		
	0 5		

OVER-

	Graph	Set-builder notation	Interval Notation
(c)			(-8, 2]
(d)		$\left\{x \left x > -4\right\}\right\}$	
(e)			
(f)			(−3,∞)
(g)		$\left\{ x \left x \le 1 \right\} \right\}$	

2. Using Interval and Set-builder Notation to State Domain and Range

Determine the domain and range of the following functions and state your answers in both interval and set-builder notation.

(a)

(b).

Domain (interval notation):

Domain (set-builder notation):

Range (interval notation):

Range (set-builder notation):

Domain (interval notation):

Domain (set-builder notation):

Range (interval notation): Range (set-builder notation):