\qquad
MUST SHOW STEPS WHENEVER APPROPRIATE

Classify each number as one or more of the following: natural number, whole number, integer, rational number, irrational number, or real number.

1) $\frac{53}{76}$ (Fraction of $9-$ to 10 - year-old children at a day camp)
2) $3^{-2}=\frac{1}{9}$

Rations
2) 834 (Number of students in the school)

Whale Use properties of exponents to simplify. Write answers
positive exponents. $x^{-7} \cdot x^{4} \cdot x^{-3}=x^{-7+4+-3}=x^{-6}=\frac{1}{x}$
3) $70 \sqrt{7}$ (Length in feet of the playground)

IRRATIONAL
13) $4 a^{9} \cdot 2 a^{-3}=8 a^{6}$

State whether the equation is the result of an identity, commutative, associative, or distributive property.
4) $-(2 x+8 y)=-2 x-8 y$

Distributive
5) $(4 \cdot 3) \cdot 5=4 \cdot(3 \cdot 5)$
associative
6) $3+2=2+3$

Commutative

Write the number as an exponential expression using the given base.
$\begin{array}{r}81 \\ +3 \\ \hline\end{array}$
243

* 3 Evaluate the expression.
${ }^{8)}-54 \stackrel{-}{ }=-625$

9) $\left(\frac{5}{6}\right)^{-2}=\left(\frac{6}{5}\right)^{2}=\frac{36}{25}$
10) $\left(5 x^{4}\right)^{-3}=5^{-3} x^{-12}=\frac{1}{125 x^{12}}$
${ }^{177} \frac{12 x^{-4} 7}{6 x^{5}}=2 x^{-4-5} y^{7}=\frac{2 y^{7}}{x^{9}}$
11) $\left(\frac{5 x}{y^{3}}\right)^{-4}=\frac{y^{12}}{(5 x)^{4}}=\frac{y^{12}}{625 x^{4}}$
12) $\left(\frac{-3 x}{y^{4}}\right)^{-3}=\left(\frac{y^{4}}{-3 x}\right)^{+3}=\frac{y^{12}}{-27 x^{3}}$

Use properties of exponents to simplify. Write answers with positive exponents.. Assume variables represent

$$
=7^{16} \mathrm{~m}
$$

${ }^{211} \frac{8-6 p \cdot 8-8_{p}}{87 p^{3}}=\frac{8^{-14} p^{-1}}{87}$

$$
=8^{-14-7} \bar{p}^{-1}=8^{-21} \bar{p}^{87}=\frac{1}{8^{21} p}
$$

22) $\begin{aligned} \frac{x^{-7}}{(8 x)^{-7}}=\frac{(8 x)^{7}}{x^{7}} & =8^{7} x^{0} \\ & \left.=8^{7}\right]=2097152\end{aligned}$
${ }^{233} \frac{(6 x)^{9}}{x^{9}}=\frac{6^{9} x^{9}}{x^{9}}=6^{9}=10077696$
23) $\begin{aligned} \frac{x^{-2}\left(x^{9}\right)^{-2}}{\left(x^{-5}\right)^{-5}} & =\frac{x^{-2} x^{-18}}{x^{25}}=\frac{x^{-20}}{x^{25}}=x^{-20-25} \\ & =x 45\end{aligned}$

Evaluate each expression following the order of operations.
25) $\frac{4^{3}-3^{4}}{8}+\frac{3}{4}=-1.375$
26) $\frac{-5^{2}+1}{\frac{2}{5}}=-60$ form.

$$
\begin{aligned}
& \text { nonnegative numbers. } \\
& \frac{7^{16} \mathrm{~m}}{\substack{\text { nonnegative numbers. } \\
\frac{z_{m}, 7 \sigma_{m}}{17_{m}}}}=\frac{7^{9} m}{7^{-7}}
\end{aligned}
$$

Write the number in scientific notation.
${ }^{277} 76,197=7.6197 \times 10^{4}$
${ }^{28)} 0.00001094=1.094 \times 10^{-5}$
29) Convert 8.672×10^{7} to standard form

$$
86720000
$$

30) Convert 7.0262×10^{-7} to standard form

$$
0.00000070262
$$

31) If P dollars is deposited in a savings account paying $r \%$ annual interest, then the amount A in the account after x years is given by $A=P\left(1+\frac{r}{100}\right)^{x}$. Find A if $P=\$ 300$, $x=5$ years, and $r=3 \%$.

$$
\begin{aligned}
& x=5 \text { years and } \mathrm{r}=3 \% \\
& A=300\left(1+\frac{3}{100}\right)^{5 \$}=347.78
\end{aligned}
$$

32) In a certain year the Federal debt held by the public was $\$ 1.47$ trillion, while the population of the United States was 326 million.
Approximate the national debt per person.

$$
\begin{aligned}
& \left(1-4 \times 10^{12}\right) \div\left(326 \times 10^{6}\right)= \\
& \# 4509.20
\end{aligned}
$$

33) A movie opened with a first day attendance of $1,200,000$. If the average cost of a ticket was $\$ 8$, how much was collected from ticket sales on the first day?

$$
\begin{aligned}
\text { the fist stay } \\
120000
\end{aligned}=9600000
$$

Evaluate the expression and write the answer in standard
34) $\frac{\left(4 \times 10^{-4}\right)}{\left(8 \times 10^{-3}\right)}=0.05$

