Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

Learning Objectives:

- Understand exponential functions and consequences of constant percentage change.
- Calculate exponential growth, exponential decay, and the half-life.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- An exponential function is a function that changes at a constant percentage rate.
- Example: If a population triples each hour, does this represent constant percentage growth?

If so, what is the percentage increase each hour?
Is the population size an exponential function of time?

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Solution: The population changes each hour:

Population next hour $=3 \times$ Current population
Suppose we start with 100 individuals:

$$
\begin{aligned}
\text { Initial population } & =100 \\
\text { Population after } 1 \text { hour } & =3 \times 100=300 \\
\text { Population after } 2 \text { hours } & =3 \times 300=900
\end{aligned}
$$

Let's look at this in terms of growth:
Growth over $1^{\text {st }}$ hour $=300-100=200=200 \%$ increase over 100
Growth over $2^{\text {nd }}$ hour $=900-300=600=200 \%$ increase over 300
The population is growing at a constant percentage rate, 200\% each hour. Thus, the population is an exponential function of time.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Exponential Formulas
\square The formula faran nunnnantial funatinn $\ldots n f+$ ir.

$$
\mathrm{y}=\text { Initial value } \times \text { Base }^{t}
$$

\square An exponential function y of t is characterized by the following property: When t increases by 1 , to find the new value of y, we multiply the current value by the base.

$$
y-\text { value for } t+1=\text { Base } \times y-\text { value for } t
$$

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Example: The value of a certain investment grows according to the rule:

$$
\text { Next year's balance }=1.07 \times \text { Current balance }
$$

1. Find the percentage increase each year, and explain why the balance is an exponential function of time.
2. Assume that the original investment is $\$ 800$. Find an exponential formula that gives the balance in terms of time.
3. What is the balance after 10 years?

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Solution:

1. The next year's balance $=1.07 \times$ this year's balance .

The next year's balance is 107% of this year's balance.
That is an increase of 7% per year. Because the balance grows by the same percentage each year, it is an exponential function of time.
2. Let $B=$ the balance in dollars after t years.

$$
B=\text { Initial value } \times \text { Base }^{t}
$$

The initial value $=\$ 800$. The base $=1.07$. This gives the formula:

$$
B=800 \times 1.07^{t}
$$

3. Balance after 10 years $=800 \times 1.07^{10}=\$ 1573.72$.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Example: Consider the investment from the previous example where the balance B after t years is given by:

$$
B=800 \times 1.07^{t} \text { dollars }
$$

What is the growth of the balance over the first 10 years? Compare this with the growth from year 40 to year 50.

- Solution: The balance after 10 years was $\$ 1573.72$.

Growth over first 10 years $=\$ 1573.72-800=\$ 773.72$.
To calculate the growth from year 40 to year 50:
Balance after 40 years $=800 \times 1.07^{40}=\$ 11,979.57$
Balance after 50 years $=800 \times 1.07^{50}=\$ 23,565.62$
That is an increase of $\$ 23,565.62-\$ 11,979.57=\$ 11,586.05$. That is almost 15 times the growth over the first 10 years.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Exponential Growth

1. A quantity grows exponentially when it increases by a constant percentage over a given period.
2. If r is the percentage growth per period then the base of the exponential function is $1+r$. For exponential growth, the base is always greater than 1.

$$
\text { Amount }=\text { Initial value } \times(1+r)^{\mathrm{t}}
$$

Here, t is the number of periods.
3. Typically, exponential growth starts slowly and then increases rapidly.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Example: U.S. health-care expenditures in 2010 reached 2.47 trillion dollars. In the near term this is expected to grow by 6.5\% each year. Assuming that this growth rate continues, find a formula that gives health-care expenditures as a function of time. If this trend continues, what will health-care expenditures be in 2030?
- Solution: Let H be the expenditures t years after 2010 .

$$
H=\text { Initial value } \times(1+r)^{t}=2.47 \times(1+0.065)^{t}
$$

To predict health-care expenditures in 2030, use $t=20$ in the formula for H :
Expenditures in $2030=2.47 \times(1+0.065)^{20}$ trillion dollars.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Solut

FIGURE 3.27 Health-care expenditures.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Exponential Decay

1. A quantity decays exponentially when it decreases by a constant percentage over a given period.
2. If r is the percentage decay per period, then the base of the exponential function is $1-r$. For exponential decay, the base is

$$
\text { Amount }=\text { Initial value } \times(1-r)^{t}
$$

Here, t is the number of periods.
3. Typically, exponential decay is rapid first but eventually slows.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Example: After antibiotics are administered, the concentration in the bloodstream declines over time. Suppose that 70 milligrams (mg) of amoxicillin are injected and that the amount of the drug in the bloodstream declines by 49% each hour.

Find an exponential formula that gives the amount of amoxicillin in the bloodstream as a function of time since the injection. Another injection will be required when the level declines to 10 mg . Will another injection be required before five hours?

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Solution: Let A be the amount of amoxicillin in the bloodstream after t hours. The base of the exponential function is:

$$
1-r=1-0.49=0.51
$$

The initial value $=70 \mathrm{mg}$:

$$
A=\text { Initial value } \times(1-r)^{t}=70 \times 0.51^{t}
$$

To find the amount of amoxicillin after 5 hours:

$$
A=70 \times 0.51^{5}=2.4 \mathrm{mg}
$$

The result is about 2.4 mg , which is less than the minimum of 10 mg . Thus, another injection will be needed before 5 hours.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Solution:

FIGURE 3.29 Amoxicillin in the blood.
The graph shows that the level declines to 10 mg in about 3 hours.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- The half-life of a radioactive substance is the time it takes for half of the substance to decay.
- After h half-lives, the amount of a radioactive substance ren \quad Half-life formula

$$
\text { Amount remaining }=\text { Initial amount } \times\left(\frac{1}{2}\right)^{t}
$$

- We can find the amount remaining after t years by first expressing t in terms of half-lives and then using the formula above.

Chapter 3 Linear and Exponential Changes

3.2 Exponential growth and decay: Constant percentage rates

- Example: The carbon-14 in the organism decays, with a half-life of 5770 years. Suppose a tree contains C_{0} grams of carbon-14 when it was cut down. What percentage of the original amount of carbon14 would we find if it was cut down 30,000 years ago?
- Solution:

The amount C remaining after h half - life $=C_{\mathrm{o}} \times\left(\frac{1}{2}\right)^{h}$
$5770=1$ half-life $\Rightarrow 30,000$ years $/ 5770=5.20$ half-lives
Amount after 30,000 years $=C_{\mathrm{o}} \times\left(\frac{1}{2}\right)^{5.20}=0.027 C_{\mathrm{o}}$ grams.
Thus, about 2.7% of the original amount of carbon-14 remains after 30,000 years.

