Dr. Katiraie Math 115A Practice Quiz 4 (Section 3-4)

1) Solve $3 x^{2}-7 x-8=0$

$$
\mathrm{a}=\ldots \quad \mathrm{b}=\ldots \quad \mathrm{c}=
$$

Exact Solutions $\mathrm{x}=$ \qquad
Approximate solutions $\mathrm{x}=$ \qquad

$$
x=
$$

2) Solve by factoring or using Quadratic Formula:
a) $x^{2}+11 x-12=0$
b) $\mathrm{x}^{2}-7 \mathrm{x}-30=0$
3) Solve by using the quadratic formula
a) $28=16 t^{2}+2 t$
b) $4 x^{2}+x-1=0$

4) Quadratic Formula in real life: Throwing a Rock

A rock is thrown from the top of a tower that is 300 feet tall. If its height above the ground can be modeled by

$$
\mathrm{h}=-16 \mathrm{t}^{2}+64 \mathrm{t}+300 \quad \text { where } \mathrm{h} \text { is in feet, and } \mathrm{t} \text { is in seconds. }
$$

a) To the nearest tenth of a second, how long does it take the rock to reach the ground?
b) To the nearest tenth of a foot, how high will the rock go before it starts falling down?
c) To the nearest tenth of a second, how long will it take the rock to reach its maximum height?
5) Example using the Quadratic Formula for stable population levels. For a certain population the growth rate G , in thousands of individuals per year depends on the size N , in thousands, of the population. The relation is

$$
G=2+2 N-.3 N^{2}
$$

-the population level is stable so the growth rate is 0 . At what level is the population stable?

$$
\mathrm{a}=\ldots \quad \mathrm{b}=\ldots \quad \mathrm{c}=
$$

Solution $\mathrm{N}=$ \qquad
\qquad
But the solution is \qquad because \qquad
6) Find the vertex of $y=3 x^{2}-24 x+10$
7) Find the vertex of $y=2 x^{2}-28 x+12$
8) Example using vertex-A rectangular pen can be constructed using the side of a barn as one boundary and 2500 ft . of fence to make the other three sides. Find the length and width of the rectangle to make the largest area.

Draw a picture-

Work to solve problem.
$\mathrm{x}=$ width $=$
length= \qquad
9) Example using vertex-A rectangular pen can be constructed using the side of a barn as one boundary and 4500 ft . of fence to make the other three sides. Find the length and width of the rectangle to make the largest area.

Draw a picture-

Work to solve problem.
$\mathrm{x}=$ width $=$ \qquad length $=$ \qquad

