Dr. Katiraie Math 115A Notes Section 3.3
 Logarithmic phenomena: compressed scales

Homework- Read section 3.3 Some hints for reading. Read the key concepts closely, look closely at the purple-lined boxes, and then read and try to understand the example chronologically. You can now begin your homework on-line for section 3-3.

Logarithmic function-is the kind of function that \qquad the effect of an exponential function

Open your books and look at p. 166 on the top

Exponential (Section 3.2)
Time vs. population

$$
100=10^{2}
$$

now Logarithmic (3.3)
population vs. time
$\log 100=2$
t-chart-to reverse the function you switch the x axis and y axis and then graph.
This is what you are seeing on $p .166$
$\underline{\text { Kev Concept- The common logarithm of a positive number } \mathrm{x} \text {, written }}$ \qquad
Is the \qquad of 10 that gives x .

Formally \qquad if and only if \qquad

1. $\log 10=1$ because
2. $\log 100=2$ because
3. $\log 1000=3$ because
4. $\log 1 / 10=-1$ because

Example- What is the logarithm of
A) 1 million
B) one thousandths
C) 5 ?

Now, you try 3.15: What is logarithm of 1 billion?

Real World Examples of Logarithms

I. Key Concept- The relative intensity of an earthquake is a measurement of ground movement. The \qquad of an earthquake is the \qquad of relative intensity

Equation

Equation

Look at the chart on p. 169 Richter magnitude

Ex. If an earthquake has a relative intensity of 6700 , what is its magnitude?

Meaning-an increase of 1 unit on the Richter scale corresponds to increasing the relative intensity by a factor of 10
-an increase of t units in magnitude corresponds to increasing relative intensity by a factor of \qquad
Ex. P. 170 of book "In 1994 an earthquake measuring 6.7 on the Richter scale occurred in North ridge California. In 1958....

II $>$ Decibel as a measure of sound
Key Concept- The decibel rating of sound is \qquad times the logarithm of its intensity.
II. Decibels are given in whole numbers

Look at the sound chart in your book on p. 171
Summary

Example—Look in your book at p. 172 Example 3.18
Summary vacuumed cleaner 80 decibels
Bull dozer 85 decibels
Compare

Example- A stereo plays 60 decibel. What decibel would we expect with a second speaker?

We are doubling the intensity of the sound not the loudness.

Section 3.3 Part 2 Notes Math 115A

Solving exponential equations

Property of Logarithms
1.
2.
3.

Ex. Suppose we have a population that is initially 500 and grows at a rate of 0.5% per month. How long will it take for the population to reach 800 ?

Solving Exponential Equations.

Ex. An investment is initially $\$ 5000$ and grows by 10% each year. How long will it take for the account balance to reach $\$ 20,000$? Round answer to one decimal place.

Doubling time and More

Suppose a quantity as an exponential function with a given base. The time t required to multiply the initial value by K is:

```
Special case -doubling time where \(\mathrm{K}=2\)
```

Ex. An investment grows by 7\% each year. How long does it take for the investment to double? Round answer to one decimal place?

Ex. P. 176 in book look at Ex. 3.22
Summary carbon-14 half life is 5770 years
Suppose a charcoal from an ancient campfire is found to contain only one-third of the carbon-14 of a living tree. How long ago did the tree that was the source of the charcoal die? Give answer first in half-lives and then in years rounded to the nearest hundred?

