Let the demand and supply functions be represented by \(D(p) \) and \(S(p) \), where \(p \) is the price in dollars.

\[
D(p) = 4000 - 35p \quad S(p) = 95p
\]

A. Find the price when the demand is 2700. Is there a surplus or a shortage at this price? (3 Points)

Using \(D(p) \),

\[
2700 = 4000 - 35p
\]

\[
-1300 = -35p \Rightarrow p = -1300/-35 = 37.14 \Rightarrow \text{price} = $37.14
\]

\[
S(p) = S(37.14) = 95(37.14) = 3528.3
\]

\(S = 3528.3 > D = 2700 \) when the price, \(p = $37.14 \) so there is a surplus.

In general, you must support surplus with the statement \(S > D \) and shortage with the statement \(S < D \).

B. Find the equilibrium price and demand (supply) for the given functions. (3 Points)

Solve \(D = S \)

\[
4000 - 35p = 95p
\]

\[
4000 = 130p \quad P = 4000/130 = 30.77 \quad ; \quad \text{therefore} \quad p = $30.77
\]

and \(S(30.77) = 95*30.77 = 2923.15 \)

Then, the **equilibrium price and demand (supply) = ($30.77, 2923.15)**

C. At what prices is there a surplus? (3 Points)

For prices \(p > $30.77 \)

D. At what prices is there a shortage? (3 Points)

For prices \(p < $30.77 \)

In general, for the Supply/Demand problems that are covered in this course, surplus is when \(p > \) equilibrium price and shortage is when \(p < \) equilibrium price.
(x_1, y_1) \\
(x_2, y_2) \\
\[m = \frac{y_2 - y_1}{x_2 - x_1} \quad y = mx + b \quad y - y_1 = m(x - x_1) \]

2) Write the equation of the line through (-15, -3) with
 slope \(m = \frac{3}{5} \)

 Method 1: You can use the point-slope formula as follows:
 \[y - y_1 = m(x-x_1) \]
 \[y - (-3) = \frac{3}{5}(x-(-15)) \]
 \[y + 3 = \frac{3}{5}x + 9 \]
 \[y = \frac{3}{5}x + 9 - 3 \]
 \[y = \frac{3}{5}x + 6 \]

 Method 2: Use the slope-intercept form as follows:
 \[y = mx + b \]
 \[-3 = \frac{3}{5}(-15) + b \]
 \[-3 = -9 + b \]
 \[-3 + 9 = -9 + b + 9 \]
 \[6 = b \]
 \[y = \frac{3}{5}x + 6 \]

3) Write the equation of the line through (-6, 2) and (-7, 5)

 \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5-2}{-7-(-6)} = -3 \]
 \[y - 2 = -3(x - (-6)) \]
 \[y - 2 = -3x - 6 \]
 \[y = -3x - 16 \]