MA 110 Dr. Katiraie QUIZ \#1 SPRING 2012

NAME \qquad SCORE:

Let the demand and supply functions be represented by $D(p)$ and $S(p)$, where p is the price in dollars.

$$
D(p)=4000-35 p \quad S(p)=95 p
$$

A. Find the price when the demand is 2700 . Is there a surplus or a shortage at this price?
(3 Points)
Using $D(p), 2700=4000-35 p$

$$
-1300=-35 p \rightarrow p=-1300 /-35=37.14 \rightarrow \text { price }=\$ 37.14
$$

$S(p)=S(37.14)=95(37.14)=3528.3$
$S=3528.3 .5>\mathrm{D}=2700$ when the price, $\mathrm{p}=\$ 37.14$ so there is a surplus.
**In general, you must support surplus with the statement $\mathrm{S}>\mathrm{D}$ and shortage with the statement $\mathrm{S}<\mathrm{D}$.
B. Find the equilibrium price and demand (supply) for the given functions.

Solve D = S $\quad 4000-35 p=95 p$
$4000=130 p \quad P=4000 / 130=30.77$; therefore $p=\$ 30.77$
and $\quad S(30.77)=95 * 30.77=2923.15$
Then, the equilibrium price and demand (supply) $=(\$ 30.77$, 2923.15)
C. At what prices is there a surplus?
(3 Points)
For prices p > \$30.77
D. At what prices is there a shortage?

For prices $p<\$ 30.77$
** In general, for the Supply/Demand problems that are covered in this course, surplus is when $p>$ equilibrium price and shortage is when $p<$ equilibrium price.
$\left(x_{1}, y_{1}\right)$
$\left(x_{2}, y_{2}\right)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad y=m x+b \quad y-y_{1}=m\left(x-x_{1}\right)$
2) Write the equation of the line through (-15, -3) with

$$
\text { slope } m=\frac{3}{5}
$$

(4 Points)
Method 1: You can use the point-slope formula as follows:
$y-y_{1}=m\left(x-x_{1}\right)$
$y-(-3)=\frac{3}{5}(x--15)$
$y+3=\frac{3}{5} x+9$
$y=\frac{3}{5} x+9-3$
$y=\frac{3}{5} x+6$
Method 2: Use the slope-intercept form as follows:

$$
y=m x+b
$$

$-3=\frac{3}{5}(-15)+b$
$-3=-9+b$
$-3+9=-9+b+9$
$6=b$
$y=\frac{3}{5} x+6$
3) Write the equation of the line through (-6, 2) and (-7, 5)
(4 Points)
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-2}{-7--6}=-3$
$\mathrm{y}-2=-3(x--6)$
$y-2=-3 x-18$
$y=-3 x-16$

