\qquad Solutions \qquad
\qquad /20

1. Graph $4 x+3 y \geq 48$. Your graph must include:
A. The coordinates of the y-intercept. Let $x=0$ and solve for y $4(0)+3 y=48$ then $y=48 / 3=16$ Therefore, yintercept is $(0,16)$
B. The coordinates of the x-intercept. Let $y=0$ and solve for x $4 x+3(0)=48$ then solving for x, we get $4 x=28$, so $x=12$ Therefore, xintercept is $(12,0)$
C. The appropriate shading for the inequality.
$(0,16)$

$(12,0)$
2. A special diet for a farm animal is to contain at most 150 units of protein. Each gram of Food A contains 6 units of protein and each gram of Food B contains 7 units of protein. How many grams of each type of food should the farmer mix so that the animal gets at most 150 units of protein?

Let $x=\#$ of grams of food A and $y=\#$ of grams of food B.
Write a linear inequality for the protein requirement.

$$
\begin{aligned}
& 6 x+7 y \leq 150 \\
& x \geq 0 \\
& y \geq 0
\end{aligned}
$$

2) Graph \& LABEL the feasible region for the following system of equations:

Be sure to include ALL of the following:
A. Label each of the 4 lines with its equation.
B. Clearly shade the inequalities.
C. Darken the boundary lines of the feasible region.
D. Draw a big dark dot on the corner points of the feasible region.
E. Write the label "F R" in the feasible region.
F. State whether the feasible region is bounded or unbounded.

$$
\begin{aligned}
3 x+y & \geq 12 \\
2 x+2 y & \geq 16 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Poti plote plots
, 1 1日 $-3 X+12$

V, 3 日 0
$v_{4}=$
$\forall \mathrm{V}=$
$\stackrel{V 6}{ }=$
$V_{7}=$

Corner points:

$(0,12) y$-intercept of the first inequality
$(2,6)$ intersection point of the first and second inequalities
$(8,0)$ intersection point of the second and forth inequalities
The feasible region is Unbounded.

