Name \qquad

1. The weekly demand for mouthwash in a chain of drug stores is 1,160 bottles at a price of $\$ 3.79$ per bottle. If the price is lowered to $\$ 3.59$, the weekly demand increases to 1,320 . Assume that the relationship between demand D and price per p is linear.
A. Write a linear equation that expresses D in terms of p.
D in terms of p means the equation should have the form $D=m p+b$. The ordered pairs should be in the form ($\mathrm{p}, \mathrm{D})$. The ordered pairs are $(3.79,1160)$ and (3.59, 1320). The slope $m=(1320-1160) /(3.59-3.79)=-800$.
$D=-800 p+b$ is known so far. Substituting $D=1160$ and $p=3.79$ (from the $1^{\text {st }}$ ordered pair) gives $1160=-800(3.79)+b$ and solving gives $b=4192$
$D=-800 p+4192$
B. What should the price of a bottle of mouthwash be so that the demand is 2000 bottles?

$$
2000=-800 p+4192 \rightarrow-800 p=-2192 \rightarrow p=-2192 /-800=\$ 2.74
$$

C. How many bottles would the stores sell each week if the price were lowered to $\$ 3.29$?

$$
D=-800(3.29)+4192=1560 \text { bottles }
$$

D. Suppose that the Supply function for the mouthwash is $S=500$ p. Is there a surplus or shortage when the price is $\$ 3.29$? Explain.
$S=500(3.29)=1645$ bottles. The supply is greater than the demand so there is a surplus.
E. Find the equilibrium price.

Solve S = D. $500 p=-800 p+4192 \rightarrow 1300 p=4192 \rightarrow p=4192 / 1300=\$ 3.22$
F. For what prices is there a shortage? Explain.

For prices less than the equilibrium price, $\mathrm{p}<\$ 3.22$. The graph of S (supply) is lower than the graph of D (demand) for $p<\$ 3.22$.
2. A charter company buys a new machine for $\$ 4500$ and assumes that it will have a trade in value of $\$ 500$ after 8 years. Supposing the machine depreciates linearly,
A. Find a linear model V for the depreciated value of the machine t years after is was purchased. Clearly show your ordered pairs and a few other steps!!

Form of equation should be $\mathrm{V}=\mathrm{mt}+\mathrm{b}$.
$(0,4500)(8,500)$ slope $=(4500-500) /(0-8)=-500 \rightarrow V=-500 \mathrm{t}+4500$
B. INTERPRET the slope of your linear function. Write your answer in sentence form. Each year the value of the machine decreases by $\$ 500$.
C. What is the depreciated value of the machine after 3 years?
$V=-500(3)+4500=\$ 3000$
D. When will the depreciated value be $\$ 2000$? Answer to nearest whole year.

$$
-500 \mathrm{t}+4500=2000 \rightarrow-500 \mathrm{t}=-2500 \rightarrow \mathrm{t}=5 \text { years }
$$

4. The research department in a company that manufactures dish washers established the following functions: Revenue: $R(x)=-3 x^{2}+120 x$ and Cost: $C(x)=500+25 x, 0 \leq x \leq$ 40 , is in hundreds, $\mathrm{p}(\mathrm{x})$ is in dollars, and $\mathrm{R}(\mathrm{x})$ and $\mathrm{C}(\mathrm{x})$ are in hundreds of dollars.
A. Find the production level(s) of docks (to the nearest hundred) at which the company has break-even point(s). You should find this answer graphically.

Give units with your answer!!

(and 6.7 hundred or 670 and $x=25$ hundred or 2500
Rounding to the nearest hundred, the answers are 700 and 25 hundred dish washers.
B. If the company sells 30 hundred dish washers will they make a profit or experience a loss? Explain.

Loss, 30 falls outside the break-even points.
Also, $R(30)=-3(30)^{2}+120(30)=900$ and $C(30)=500+25(30)=1250$
so Cost > Revenue
4. The research department in a company that manufactures cell phone established the following price-demand function: $p(x)=300-15 x$ where $x, 0 \leq x \leq 20$, is in hundreds and $\mathrm{p}(\mathrm{x})$ is in dollars.
A. Write the revenue function $R(x)$ where x is the number of cell phones sold (in hundreds) and $R(x)$ is the revenue in hundreds of dollars.
$R(x)=x(300-15 x)=-15 x^{2}+300 x$
B. Determine the number of cell phones that must be sold to maximize the revenue. Give units with your answer!! You may find this answer algebraically or graphically. Show your steps or a simple sketch of your graph to support your answer.
$x=-b / 2 a=-300 /\left(2^{*}-15\right)=10$ hundred or 1000 cell phones
C. What is the price per cell phone when revenue is maximized? Show which equation you use and your substitution.
$P(10)=300-15(10)=\$ 150$ per phone
D. What is the maximum revenue? Give units with your answer!! Show your substitution or a simple sketch of your supporting graph.
$R(10)=-15(10)^{2}+300(10)=1500$ hundred dollars or $\$ 150,000$
5. What will the pay-off amount be for a 16 month loan of $\$ 2,500$ at an annual simple interest rate of 9.5% ? $\mathbf{I}=\mathbf{P r t}$ and $\mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{r t})$
$A=2500(1+.095(16 / 12))=\$ 2816.67$
6. What interest rate compounded quarterly is needed to have a $\$ 1,000$ investment grow to $\$ 5,000$ in five years?

$\mathrm{N}=20$
$\mathrm{I} \%==$
$\mathrm{PV}=-1000$
$\mathrm{PMT}=0$
$\mathrm{FV}=5000$
$\mathrm{P} / \mathrm{Y}=4$

Answer: 33.52\%
7. If you deposit $\$ 450$ a month into your child's college fund for 18 years at 4.7\% compounded monthly, how much will you accumulate?

$\mathbf{N}=216$
$\mathbf{I} \%=4.7$
$\mathbf{P V}=0$
$\mathbf{P M T}=-450$
$\mathbf{F V}=$
$\mathbf{P} / \mathrm{Y}=12$

Answer: \$152,401.72
How much interest does this account earn in the $18^{\text {th }}$ (last) year? Hint: You have to use the TVM solver and then simple arithmetic. Show arithmetic here:

$\mathbf{N}=216-12=204$
$\mathbf{I} \%=4.7$
$\mathbf{P V}=0$
$\mathbf{P M T}=-450$
$\mathbf{F V}=\mathbf{1 4 0 , 1 5 2 . 9 1}$
$\mathbf{P} / \mathbf{Y}=12$

At the beginning of the $18^{\text {th }}$ year, there have been 204 payments into this account. The amount in the account at the beginning of the $18^{\text {th }}$ year is $\$ 140,152.91$. The total increase in the account during the $18^{\text {th }}$ year is $152,401.72-140,152.91=$ $12,248.81$. Of that amount, $12 * 450=5400$ is deposited by the parents. The total interested earned in the $18^{\text {th }}$ year is the difference: $12,248.81-5400=$ \$6848.81.

Answer: \$6848.81
8. You purchase a home set up a 30-year mortgage $\$ 320,000$ with a loan company that charges 7.5% compounded monthly. What will your monthly mortgage payments be?

$\mathrm{N}=360$
$\mathrm{I} \%=7.5$
$\mathbf{P V}=320000$
$\mathbf{P M T}=$
$\mathrm{FV}=0$
$\mathbf{P} / \mathrm{Y}=12$

Answer: $\$ 2237.49$
How much interest will you pay over the entire length of the loan?
360(2237.49) - 320,000 = \$485,496.40
9. How much should you deposit now to accumulate $\$ 45,000$ in 10 years in an account that earns 4.3% compounded quarterly? If you use the TVM solver fill in the table, otherwise, you can list the formula and show your substitutions.

$N=40$
$\mathbf{I} \%=4.3$
$\mathbf{P V}=$
$\mathbf{P M T}=0$
$\mathbf{F V}=45,000$
$\mathbf{P} / \mathrm{Y}=4$

Answer: \$29,340.16
10. How many years will it take for $\$ 8,000$ to grow to $\$ 15,000$ in an account that earns 3.5% compounded quarterly?

$N=$
$\mathbf{I} \%=3.5$
$\mathbf{P V}=-8000$
$\mathbf{P M T}=0$
$\mathbf{F V}=15,000$
$\mathbf{P} / \mathbf{Y}=4$

Answer: $\quad N \sim 72,72 / 4=18$ years.
11. How much will you need to save each month for 35 years to accumulate $\$ 2,300,000$ in your retirement account if you can earn 6.8\% compounded monthly.

$N=35^{*} 12=420$
$\mathrm{I} \%=6.8$
$\mathrm{PV}=0$
$\mathrm{PMT}=$
$\mathrm{FV}=2,300,000$
$\mathrm{P} / \mathrm{Y}=12$

Answer: $\$ 1339.15$

