1) FINDING THE INTERSECTION POINT OF TWO LINES BY THE ELIMINATION METHOD:

Example: Solve the following system of equations.
$3 x+9 y=45$
$2 x+y=10$
STEP 1: Decide whether to eliminate the x or y variable. Usually you make this choice by seeing which variable's coefficients has the smaller LCM. The coefficients of x are 2 and $3 \operatorname{LCM}(2,3)=6$. The coefficients of y are 1 and $9 \operatorname{LCM}(1,9)=9$. So we will eliminate the x variable.

Multiply the top equation by 2 and the bottom equation by -3 , so that one coefficient of x is +6 and the other is -6 . You must make one coefficient positive and one negative for the variable you want to eliminate.

$$
\begin{aligned}
2(3 x+9 y) & =2(45) & \rightarrow & 6 x+18 y=90 \\
-3(2 x+y) & =-3(10) & \rightarrow & -6 x-3 y=-30
\end{aligned}
$$

STEP 2: ELIMINATE one variable (in this case x), by adding the two equations.

$$
15 y=60
$$

STEP 3: Solve for the remaining variable (in this case y).

$$
Y=60 / 15=4
$$

STEP 4: SUBSTITUTE into either original equation to find other coordinate of intersection point.

$$
\begin{array}{lll}
3 x+9(4)=45 & \text { or } & 2 x+4=10 \\
3 x+36=45 & & 2 x=6 \\
3 x=9 & & x=3 \\
x=3 & &
\end{array}
$$

STEP 5: Write final answer.
The intersection point is $(3,4)$.
2) FINDING THE INTERSECTION POINT OF TWO LINES BY THE SUBSTITUTION METHOD:

Solve the following system of equations by Substitution Method

$$
\begin{aligned}
& 3 x+9 y=45 \\
& 2 x+y=10
\end{aligned}
$$

STEP 1: Solve each equation for y.

$$
\begin{array}{rlrl}
3 x+9 y & =45 & 2 x+y & =10 \\
9 y & =-3 x+45 & y & =-2 x+10 \\
y & =-\frac{1}{3} x+5 &
\end{array}
$$

STEP 2: \quad SUBSTITUTE the solution for y of the first equation into y for the second equation.

$$
-\frac{1}{3} x+5=-2 x+10
$$

STEP 3: \quad Solve for x.

$$
\begin{aligned}
3\left(-\frac{1}{3} x+5\right)=3(-2 x+10) & \text { Clear the fraction } \\
-x+15=-6 x+30 & \text { Combine like terms } \\
5 x=15 & \text { Isolate } x \\
x=3 & \text { Solution }
\end{aligned}
$$

STEP 4: SUBSTITUTE to find other coordinate of intersection point.

$$
y=-2 x+10=-2(3)+10=4
$$

STEP 5: Write final answer.
The intersection point is $(3,4)$.
3) Use these matrices to answer the following questions.

$$
A=\left[\begin{array}{rrr}
4 & -3 & 7 \\
5 & 0 & -8
\end{array}\right] \quad B=\left[\begin{array}{rr}
-3 & 5 \\
0 & -8
\end{array}\right] \quad C=\left[\begin{array}{lll}
4 & -3 & 7
\end{array}\right] \quad D=\left[\begin{array}{rrr}
5 & -2 & 9 \\
3 & 0 & -6 \\
4 & -1 & -2
\end{array}\right]
$$

$$
E=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f}
\end{array}\right] \quad \mathrm{F}=\left[\begin{array}{cc}
4 & -3 \\
5 & 0 \\
9 & 2 \\
7 & -8
\end{array}\right] \quad G=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right] \quad H=\left[\begin{array}{r}
4 \\
-3 \\
0
\end{array}\right]
$$

A. List the size of each of the following matrices:

Solution:

Please recall that the size of a matrix is always the number of rows X number of columns
$A=2 \times 3$
$B=$ \qquad $C=\underline{1 \times 3}$ $D=\underline{3 \times 3}$ $E=3 \times 2$
$F=4 \times 2$ $G=2 \times 2$

$$
H=\underline{3 \times 1}
$$

B. Do not compute - just answer question!! Are the following products possible to compute? If so, write yes in the blank. If not, explain why not - be brief - but specific!

$$
A D \equiv(2 \times 3)(3 \times 3)=(2 \times 3) Y E S
$$

$$
\text { EF } \equiv(3 \times 2)(4 \times 2)=\text { Not Possible }
$$

$$
\text { FD } \equiv(4 \times 2)(3 \times 3)=\text { Not Possible }
$$

$$
\text { FG }=(4 \times 2)(2 \times 2)=Y e s, \text { this is Possible }
$$

C. Find the product BG

Solution:

The size of $\mathrm{BG}=(2 \times 2)(2 \times 2)=(2 \times 2)$ which is possible
$B=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right] \quad G=\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]$

Then $B G=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right] *\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{ll}-3 w+5 y & -3 x+5 z \\ 0 w-8 y & 0 x-8 z\end{array}\right]=\left[\begin{array}{ll}-3 w+5 y & -3 x+5 z \\ 0-8 y & 0-8 z\end{array}\right]$
D. Find the result of 3 times matrix B, namely: $3 B$

Solution:

$3 B=3\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right]=\left[\begin{array}{cc}3(-3) & 3 * 5 \\ 3(0) & 3 *(-8)\end{array}\right]=\left[\begin{array}{rr}-9 & 15 \\ 0 & -24\end{array}\right]$
E. Find matrix B added to matrix G, namely $B+G$

Solution:

$B+G=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right]+\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{cc}-3+w & 5+x \\ 0+y & -8+z\end{array}\right]$
F. Find the inverse of matrix B namely, $B^{\wedge}-1$

Solution:

First go to Matrix menu of your calculator, and input matrix B
Then go to Matrix menu of your calculator and pick matrix B, then use the $x^{\wedge}-1$ button of your calculator, and then use the MATH Frac part of your calculator, and get
$\mathrm{B}^{\wedge}-1=\left[\begin{array}{cc}-\frac{1}{3} & \frac{-5}{24} \\ 0 & \frac{-1}{8}\end{array}\right]$
G. Find the result of matrix G being subtracted from matrix B, namely $B-G$

Solution:

$B-G=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right]-\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{ll}-3-w & 5-x \\ 0-y & -8-z\end{array}\right]$
4) A grain dealer sold to one customer 5 bushels of wheat, 2 of corn, and 3 of rye, for $\$$ 31.00. To another customer he sold 2 bushels of wheat, 3 of corn, and 5 of rye, for $\$ 27.60$. To a third customer he sold 3 bushels of wheat, 5 of corn, and 2 of rye for $\$ 32.70$. What was the price per bushel for each of the different grains?

Solution:

Set up matrix equations for this problem and use inverses to solve.

Let x represent the price per bushel for wheat, y the price per bushel for corn, and z the price per bushel for rye.

Write the matrix algebra system for this problem:

$$
\left[\begin{array}{lll}
5 & 2 & 3 \\
2 & 3 & 5 \\
3 & 5 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
31.00 \\
27.60 \\
32.70
\end{array}\right]
$$

Use inverses to solve the system

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
5 & 2 & 3 \\
2 & 3 & 5 \\
3 & 5 & 2
\end{array}\right]^{-1}\left[\begin{array}{l}
31.00 \\
27.60 \\
32.70
\end{array}\right]=\left[\begin{array}{c}
3.61 \\
3.61 \\
1.91
\end{array}\right]
$$

Write out the solution to the problem.
The wheat sells for $\$ 3.61$ per bushel, the corn sells for $\$ 3.61$ per bushel, and the rye sells for $\$ 1.91$ per bushel.

