Name \qquad Solutions

1. A poll is conducted among the customers in a diner. The people are asked to state whether they would prefer a chicken (C) or beef (B) entrée, and which of the following sides they would prefer: rice (R), potatoes (P), or steamed veggies (S).
A. Write the sample space for this poll.
$S=\{C R, C P, C S, B R, B P, B S\}$
B. List the outcomes which belong to the event $\mathrm{A}=$ "the customer prefers chicken"

$$
\mathrm{A}=\{\mathrm{CR}, \mathrm{CP}, \mathrm{CS}\}
$$

C. List the outcomes which belong to the event $\mathrm{B}=$ "The customer prefers chicken and not rice" $B=\{C P, C S\}$
2. In a certain town 70% of the people own dogs. Thirty percent of the people in the town are Vegetarians, and 21% of the vegetarians own dogs.
A. Draw a two-circle Venn Diagram using the information given.

B. What is the probability that a person is a vegetarian or owns a dog? $0.79=(0.09+0.21+0.49)$
C. What is the probability that a person is a vegetarian, but does not own a dog? 0.09
D. What is the probability that a person is a vegetarian, given they own a dog? $\quad 0.21 / 0.7=0.3$
E. Are the events "person is a vegetarian" and "person owns a dog" independent? Use an appropriate calculation not intuition to answer.

Yes, $P(V)=.3=P(V \mid D)=0.21 / 0.7=0.3$
3. A shipment of 70 hand-held digital planners, including eight that are defective, is sent to a large electronics store.
A. If one planner is selected, what is the probability that it is defective? $\quad 8 / 70=0.114$
B. If five planners are selected, what is the probability that all five are defective?

$$
\frac{\mathrm{C}_{8,5}}{\mathrm{C}_{70,5}}=\frac{56}{12,103,014} \approx 0.0000046 \text { or } \frac{8}{70} \cdot \frac{7}{69} \bullet \frac{6}{68} \cdot \frac{5}{67} \bullet \frac{4}{66}=\frac{6720}{1,452,361,680} \approx 0.0000046
$$

C. If five planners are selected, what is the probability that exactly three are defective?

$$
\frac{\mathrm{C}_{8,3} \cdot \mathrm{C}_{62,2}}{\mathrm{C}_{70,5}}=\frac{56 \cdot 1891}{12,103,014}=\frac{105,896}{12,103,014} \sim 0.009
$$

D. If the original shipment of 70 hand-held digital planners, with 8 defective were representative of a larger batch of 4000 planners, how many planners would you expect to be defective in this larger batch of 4000 ?

$$
\text { (8/70)(4000) ~ } 457 \text { planners }
$$

4. The odds of Americans living in the state in which they were born are 24 to 7 . What is the probability that an American lives in the state in which he or she was born?
$24 /(24+7)=24 / 31=0.77$
5. The probability that a person wins a certain game is $11 / 32$, what are the odds that the person wins the game?

11 to 21

$$
(32-11=21)
$$

6. College students (245 students total) were given three choices of pizza toppings and asked to choose one favorite. The following table shows the results.

Toppings	Freshman F	Sophomore So	Junior J	Senior S
Cheese C	15	13	24	26
Meat M	27	26	13	15
Veggie V	18	15	27	26

What is the probability that the person selected
A. is a freshman or chooses veggie as their favorite topping: $\mathrm{P}(\mathrm{F} \cup \mathrm{V})$

$$
(15+27+18+15+27+26) / 245 \rightarrow 128 / 245
$$

B. chooses veggie as their favorite topping: $P(V)$

$$
(18+15+27+26) / 245 \rightarrow 86 / 245
$$

C. is a freshman and chooses cheese as their favorite topping: $\mathrm{P}(\mathrm{F} \cap \mathrm{C})$

15/ 245
D. chooses neither Cheese nor veggie as their favorite topping: $P\left(C^{\prime} \cap V^{\prime}\right)$ or $P\left((C \cup V)^{\prime}\right)$ $(27+26+13+15) / 245 \rightarrow 81 / 245$
E. is a freshman given that the person chooses veggie as their favorite topping: $P(F \mid V)$ $18 /(18+15+27+26) \rightarrow 18 / 86$
F. choose veggie as their favorite topping given that the person is a freshman: $P(V \mid F)$
$18 /(15+27+18) \rightarrow 18 / 60$
7. A store sells three brands of CD players. Forty percents of the CD players they sell are manufactured by Amex, 50\% are made by Bates and the remainder are made by Circo. The store has found that 5\% of the CD players made by Amex are defective, 4% of the Bates CD players are defective, and 20\% of the Circo CD players are defective.
A. Draw a tree diagram with the given information. It is partially outlined for you.

B. If it is known that a CD player is supplied by the Circo company, what is probability that the CD Player is not defective?
$P\left(D^{\prime} \mid C\right)=.8$
C. What is the probability that a CD player at the store comes from the Bates company?
$P(B)=.5$
D. What is the probability that a CD player is both made by Bates and is defective?

$$
P(B \cap D)=.5(.04)=.02
$$

E. What is the probability that a CD player is defective?

$$
P(D)=.4(.05)+.5(.04)+.1(.2)=.06
$$

F. If it is known that a CD player is defective, what is the probability that it came from the Bates company?
$P(B \mid D)=\frac{P(B \cap D)}{P(D)}=\frac{.02}{.06}=\frac{2}{6}=\frac{1}{3}=.33$

8) FINDING THE INTERSECTION POINT OF TWO LINES BY THE ELIMINATION METHOD:

Example: Solve the following system of equations.
$3 x+9 y=45$
$2 x+y=10$
STEP 1: Decide whether to eliminate the x or y variable. Usually you make this choice by seeing which variable's coefficients has the smaller LCM. The coefficients of x are 2 and $3 \operatorname{LCM}(2,3)=6$. The coefficients of y are 1 and $9 \operatorname{LCM}(1,9)=9$. So we will eliminate the x variable.

Multiply the top equation by 2 and the bottom equation by -3 , so that one coefficient of x is +6 and the other is -6 . You must make one coefficient positive and one negative for the variable you want to eliminate.

$$
\begin{aligned}
2(3 x+9 y) & =2(45) & \rightarrow & 6 x+18 y=90 \\
-3(2 x+y) & =-3(10) & \rightarrow & -6 x-3 y=-30
\end{aligned}
$$

STEP 2: ELIMINATE one variable (in this case x), by adding the two equations.

$$
15 y=60
$$

STEP 3: Solve for the remaining variable (in this case y).

$$
Y=60 / 15=4
$$

STEP 4: SUBSTITUTE into either original equation to find other coordinate of intersection point.

$$
\begin{array}{lll}
3 x+9(4)=45 & \text { or } & 2 x+4=10 \\
3 x+36=45 & & 2 x=6 \\
3 x=9 & & x=3 \\
x=3 & &
\end{array}
$$

STEP 5: Write final answer.
The intersection point is $(3,4)$.
9) FINDING THE INTERSECTION POINT OF TWO LINES BY THE SUBSTITUTION METHOD:

Solve the following system of equations by Substitution Method

$$
\begin{aligned}
& 3 x+9 y=45 \\
& 2 x+y=10
\end{aligned}
$$

STEP 1: Solve each equation for y.

$$
\begin{array}{rlrl}
3 x+9 y & =45 & 2 x+y & =10 \\
9 y & =-3 x+45 & y & =-2 x+10 \\
y & =-\frac{1}{3} x+5 &
\end{array}
$$

STEP 2: \quad SUBSTITUTE the solution for y of the first equation into y for the second equation.

$$
-\frac{1}{3} x+5=-2 x+10
$$

STEP 3: \quad Solve for x.

$$
\begin{array}{cl}
3\left(-\frac{1}{3} x+5\right)=3(-2 x+10) & \text { Clear the fraction } \\
-x+15=-6 x+30 & \text { Combine like terms } \\
5 x=15 & \text { Isolate } x \\
x=3 & \text { Solution }
\end{array}
$$

STEP 4: SUBSTITUTE to find other coordinate of intersection point.

$$
y=-2 x+10=-2(3)+10=4
$$

STEP 5: Write final answer.
The intersection point is $(3,4)$.
10) Use these matrices to answer the following questions.

$$
A=\left[\begin{array}{rrr}
4 & -3 & 7 \\
5 & 0 & -8
\end{array}\right] \quad B=\left[\begin{array}{cr}
-3 & 5 \\
0 & -8
\end{array}\right] \quad C=\left[\begin{array}{lll}
4 & -3 & 7
\end{array}\right] \quad D=\left[\begin{array}{rrr}
5 & -2 & 9 \\
3 & 0 & -6 \\
4 & -1 & -2
\end{array}\right]
$$

$$
E=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f}
\end{array}\right] \quad \mathrm{F}=\left[\begin{array}{cc}
4 & -3 \\
5 & 0 \\
9 & 2 \\
7 & -8
\end{array}\right] \quad G=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right] \quad H=\left[\begin{array}{r}
4 \\
-3 \\
0
\end{array}\right]
$$

A. List the size of each of the following matrices:

Solution:

Please recall that the size of a matrix is always the number of rows X number of columns
$A=2 \times 3$
$B=$ \qquad $C=\underline{1 \times 3}$ $D=\underline{3 \times 3}$ $E=3 \times 2$
$F=4 \times 2$ $G=2 \times 2$

$$
H=\underline{3 \times 1}
$$

B. Do not compute - just answer question!! Are the following products possible to compute? If so, write yes in the blank. If not, explain why not - be brief - but specific!

$$
A D=(2 \times 3)(3 \times 3)=(2 \times 3) Y E S
$$

$$
\text { EF } \equiv(3 \times 2)(4 \times 2)=\text { Not Possible }
$$

$$
\text { FD } \equiv(4 \times 2)(3 \times 3)=\text { Not Possible }
$$

$$
\text { FG }=(4 \times 2)(2 \times 2)=Y e s, \text { this is Possible }
$$

C. Find the product BG

Solution:

The size of $\mathrm{BG}=(2 \times 2)(2 \times 2)=(2 \times 2)$ which is possible
$B=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right] \quad G=\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]$

Then $B G=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right] *\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{ll}-3 w+5 y & -3 x+5 z \\ 0 w-8 y & 0 x-8 z\end{array}\right]=\left[\begin{array}{ll}-3 w+5 y & -3 x+5 z \\ 0-8 y & 0-8 z\end{array}\right]$
D. Find the result of 3 times matrix B, namely: $3 B$

Solution:

$3 B=3\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right]=\left[\begin{array}{cc}3(-3) & 3 * 5 \\ 3(0) & 3 *(-8)\end{array}\right]=\left[\begin{array}{rr}-9 & 15 \\ 0 & -24\end{array}\right]$
E. Find matrix B added to matrix G, namely $B+G$

Solution:

$B+G=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right]+\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{cc}-3+w & 5+x \\ 0+y & -8+z\end{array}\right]$
F. Find the inverse of matrix B namely, $B^{\wedge}-1$

Solution:

First go to Matrix menu of your calculator, and input matrix B
Then go to Matrix menu of your calculator and pick matrix B, then use the $x^{\wedge}-1$ button of your calculator, and then use the MATH Frac part of your calculator, and get
$\mathrm{B}^{\wedge}-1=\left[\begin{array}{cc}-\frac{1}{3} & \frac{-5}{24} \\ 0 & \frac{-1}{8}\end{array}\right]$
G. Find the result of matrix G being subtracted from matrix B, namely $B-G$

Solution:

$B-G=\left[\begin{array}{rr}-3 & 5 \\ 0 & -8\end{array}\right]-\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{ll}-3-w & 5-x \\ 0-y & -8-z\end{array}\right]$
11) A grain dealer sold to one customer 5 bushels of wheat, 2 of corn, and 3 of rye, for $\$$ 31.00. To another customer he sold 2 bushels of wheat, 3 of corn, and 5 of rye, for $\$ 27.60$. To a third customer he sold 3 bushels of wheat, 5 of corn, and 2 of rye for $\$ 32.70$. What was the price per bushel for each of the different grains?

Solution:

Set up matrix equations for this problem and use inverses to solve.

Let x represent the price per bushel for wheat, y the price per bushel for corn, and z the price per bushel for rye.

Write the matrix algebra system for this problem:

$$
\left[\begin{array}{ccc}
5 & 2 & 3 \\
2 & 3 & 5 \\
3 & 5 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
31.00 \\
27.60 \\
32.70
\end{array}\right]
$$

Use inverses to solve the system

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
5 & 2 & 3 \\
2 & 3 & 5 \\
3 & 5 & 2
\end{array}\right]^{-1}\left[\begin{array}{l}
31.00 \\
27.60 \\
32.70
\end{array}\right]=\left[\begin{array}{c}
3.61 \\
3.61 \\
1.91
\end{array}\right]
$$

Write out the solution to the problem.
The wheat sells for $\$ 3.61$ per bushel, the corn sells for $\$ 3.61$ per bushel, and the rye sells for $\$ 1.91$ per bushel.
12) The following probabilities have been determined from a recent survey. The probability that a person is favors the current president is 0.72 . The probability that a person is male and favors the current president is 0.45 . The probability that a person is female and does not favor the current president is 0.21 .
A. Draw a Venn diagram that displays the survey results.

Use the diagram to determine the following:
B. a person does not favor the current president
$0.07+0.21=0.28$
C. a person is male or favors the current president
$0.07+0.45+0.27=0.79$
D. a person is not male or does not favor the current president
$0.27+0.21+0.07=0.55$
E. a person is male and does not favor the current president
13. Convert the following odds to probabilities:
A. 56 to 95
B. $\quad 7$ to 13
$56 /(56+95)=56 / 151$
$7 /(7+13)=7 / 20$
C. 40 to 11
D. $\quad 19$ to 3
$40 /(40+11)=40 / 51$
$19 /(19+3)=19 / 22$
14. Convert the following probabilities to odds:
A. $3 / 5$
B. $19 / 34$
3 to $(5-3) \rightarrow 3$ to 2
19 to $(34-19) \rightarrow 19$ to 15
C. 0.123
D. $\quad 0.87$
$0.123=123 / 1000123$ to $(123-1000) \rightarrow 123$ to $877 \quad 0.87=87 / 10087$ to 13
15. If the odds of winning a game are 9 to 7 , what is the probability of losing the game?

The odds of losing are 7 to 9 , so the probability of losing is $7 /(9+7)=7 / 16$.

Or, The proability of winning is $7 /(7+9)=7 / 16$. The probability of losing is $1-7 / 16=9 / 16$.
16. 1800 people were surveyed. The following table contains data about their favorite colors.

	\mathbf{B} BLUE	\mathbf{R} RED	\mathbf{G} GREEN	\mathbf{Y} YELLOW	Pu PURPLE	$\mathbf{P i}$ PINK	\mathbf{O} ORANGE	TOTALS
WOMEN (M')	80	170	80	20	250	350	30	980
MEN (M)	450	100	120	10	5	5	130	820
TOTALS	530	270	200	30	255	355	160	1800

Use the table to calculate the following probabilities.
A. The probability that a person selected at random from this group is a man and their favorite color is green. $\mathbf{P}(\mathbf{M} \cap \mathbf{G})$
$120 / 1800=1 / 15 \sim .067$ or 6.7% (any answer is fine - the first is the preferred)
B. \quad The probability that a person selected is a woman or favorite color is red. $\left.\mathbf{P (} \mathbf{M}^{\prime} \cup \mathbf{R}\right)$ $(980+100) / 1800=1080 / 1800=3 / 5 \sim .6$ or 60%
C. The probability that a person selected at random is a woman given that favorite color is purple. $\mathbf{P (M} \mid \mathbf{P u})$
$250 / 255=50 / 51 \sim .98$ or 98%
D. The probability that person selected at random has favorite color of red, given that the person is a man. $\mathbf{P}(\mathbf{R} \mid \mathbf{M})$
$100 / 820=5 / 41 \sim .12$ or 12%
E. The probability that a person selected at random from this group is a man and their favorite color is not purple. $\mathbf{P (M} \cap \mathbf{P u} \mathbf{\prime})$

$$
(450+100+120+10+5+130) / 1800=815 / 1800=163 / 360 \sim 0.45=45 \%
$$

Blood Type	Male	Female	TOTAL
O	80	370	450
A	150	250	400
B	50	50	100
AB	20	30	50
TOTAL	300	700	1,000

17. Use the table to find the probability that a person is selected at random from the group Note: Key words have bold type!!
A. has blood type B?
$100 / 1,000=0.1$
B. is female and has blood type B?
$50 / 1,000=0.05$
C. has blood type B given that the person is female?
$50 / 700=5 / 70$
D. is female given that the person has blood type B ?
$50 / 100=0.5$
E. the person is female or has blood type B ?

$$
(700+50) / 1,000=750 / 1,000=0.75
$$

