MATH 020 Support 5 Applications of Linear Equations

Slope-Intercept Form	Point-Slope Form	Slope Formula
y = mx + b	$y - y_1 = m(x - x_1)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$

Problems

- 1. A car rental agency charges \$275 per week plus \$0.40 per mile to rent a car.
 - a) Write an equation that expresses the weekly cost to rent the car, y, in terms of the number of miles driven during the week, x.
 - b) How many miles did you drive during the week if the weekly cost to rent the car was \$325?

- 2. A plant can manufacture 50 golf clubs per day at a total daily cost of \$5145 and 75 golf clubs per day for a total cost of \$6895.
 - a) Assuming that daily cost and production are linearly related, find the total daily cost, C, of producing x golf clubs.
 - b) Graph the total daily cost for $0 \le x \le 200$.

c) Interpret the slope and y intercept of the cost equation.

3.	The	manag	er of	a re	staur	ant t	found	that	the	cost	to	produ	ice 2	200	cups	of	coffee
is :	\$167	, while	the c	cost	to pro	oduc	e 400	cups	is \$	317.	As	ssume	the	rela	ation	shij	р
be	twee	en the o	cost y	top	rodu	ce x	cups	of cot	ffee	is lir	nea	r.					

- a) Write a linear equation that expresses the cost, y, in terms of the number of cups of coffee, x.
- b) How many cups of coffee are produced if the cost of production is \$414.50?
- 4. A farmer buys a new tractor for \$153,000 and assumes that it will have a trade-in value of \$88,000 after 10 years. The farmer uses a constant rate of depreciation to determine the annual value of the tractor.
 - a) Find a linear model for the depreciated value V of the tractor t years after it was purchased.
 - b) What is the depreciated value of the tractor after 6 years?

c) When will the depreciated value fall below \$40,000?

d) Graph V for $0 \le t \le 20$.