MATH 020 Support 4: Graphs of Linear Equations

Linear Equation in Two Variables

\[Ax + By = C \] Standard Form of a Line
\[y = mx + b \] Slope-Intercept Form

The Slope of a Line

\[\text{slope} = \frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{rise}}{\text{run}} \]

The slope of a line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

- The slope of a horizontal line: \(m = 0 \)
- The slope of a vertical line: \(m = \text{undefined} \)

"Uphill" "Downhill" Horizontal Slope = 0 Vertical Slope is Undefined

Positive Slope Negative Slope Slope = 0 Slope is Undefined

Intercepts

The \(x \)-intercept is the point where the graph intersects the \(x \)-axis. The \(y \)-intercept is the point where the graph intersects the \(y \)-axis.

To find the \(x \)-intercept, let \(y = 0 \) and solve for \(x \).

To find the \(y \)-intercept, let \(x = 0 \) and solve for \(y \).

\[y = -2x + 8 \]

To find \(x \)-intercept, let \(y = 0 \), \(0 = -2x + 8 \Rightarrow 2x = 8 \Rightarrow x = 4 \) \((4,0)\) int

To find \(y \)-intercept, let \(x = 0 \), \(y = -2(0) + 8 = y = 8 \) \((0,8)\) int

Page 1 of 3
Problems

Find the slope and y-intercept of the line and then graph.

1. $y = 2x - 8$ slope = 2
 y-intercept $(0, -8)$

2. $y = \frac{1}{2}x - 2$ slope = $\frac{1}{4}$
 y-intercept $(0, -2)$

3. $y = 8x - 9$

 - No y-intercept
 - Slope = undefined
 - x-intercept $(-3, 0)$

4. $y = 7$
 - No x-intercept
 - y-intercept $(0, 7)$

Graph the equation by first finding the x and y intercepts.

5. $3x + 4y = 12$

 - To find y-intercept let $x = 0$ & solve for y
 $3(0) + 4y = 12 \Rightarrow 4y = 12 \Rightarrow y = 3$; $(0, 3)$

 - To find x-intercept, let $y = 0$ & solve for x
 $3x + 4(0) = 12 \Rightarrow 3x = 12 \Rightarrow x = 4$; $(4, 0)$

 - Rise = $\frac{-3}{4}$
 - Run

 - $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 3}{4 - 0} = \frac{-3}{4}$
7. \(3x - 2y = 6\)

To find \(x\)-intercept, let \(y = 0\) & solve for \(x\)

\[3x - 2(0) = 6\]
\[3x = 6\]
\[x = 2\]

\(x\)-intercept is \((2, 0)\)

To find \(y\)-intercept, let \(x = 0\) & solve for \(y\)

\[3(0) - 2y = 6\]
\[-2y = 6\]
\[y = -3\]

\((0, -3)\) is \(y\)-intercept

8. \(y = 1.2x - 3.5\)

To find \(x\)-intercept, let \(y = 0\) & solve for \(x\)

\[0 = 1.2x - 3.5\]
\[3.5 = 1.2x\]
\[x = \frac{3.5}{1.2} \approx 2.92\]

\(x\)-intercept is \((2.92, 0)\)

To find \(y\)-intercept, let \(x = 0\) & solve for \(y\)

\[y = 1.2(0) - 3.5\]
\[y = -3.5\]

\((0, -3.5)\) is \(y\)-intercept

\[\text{slope} = \frac{3.5}{2.92} \approx 1.2\]