MA 110 SECTION 4.1: SYSTEMS OF LINEAR EQUATIONS REVIEW: ELIMINATION METHOD

FINDING THE INTERSECTION POINT OF TWO LINES BY THE ELIMINATION METHOD: Example: Solve the following system of equations.
$3 x+9 y=45$
$2 x+y=10$
STEP 1: Decide whether to eliminate the x or y variable. Usually you make this choice by seeing which variable's coefficients has the smaller LCM. The coefficients of x are 2 and $3 \operatorname{LCM}(2,3)=6$. The coefficients of y are 1 and $9 \operatorname{LCM}(1,9)=9$. So we will eliminate the x variable.

Multiply the top equation by 2 and the bottom equation by -3 , so that one coefficient of x is +6 and the other is -6 . You must make one coefficient positive and one negative for the variable you want to eliminate.

$$
\begin{aligned}
2(3 x+9 y) & =2(45) & \rightarrow & 6 x+18 y=90 \\
-3(2 x+y) & =-3(10) & \rightarrow & -6 x-3 y=-30
\end{aligned}
$$

STEP 2: ELIMINATE one variable (in this case x), by adding the two equations.

$$
15 y=60
$$

STEP 3: Solve for the remaining variable (in this case y).

$$
Y=60 / 15=4
$$

STEP 4: SUBSTITUTE into either original equation to find other coordinate of intersection point.

$$
\begin{array}{lll}
3 x+9(4)=45 & \text { or } & 2 x+4=10 \\
3 x+36=45 & & 2 x=6 \\
3 x=9 & & x=3 \\
x=3 & &
\end{array}
$$

STEP 5: Write final answer.
The intersection point is $(3,4)$.

PRACTICE

Solve the following systems of equations using the ELIMINATION METHOD.

$$
\text { 1. } \quad \begin{aligned}
x+2 y & =12 \\
2 x+3 y & =19
\end{aligned}
$$

2. $x+3 y=2$
$3 x+4 y=1$
3. $y=2-x$
$2 x-y=1$
4. $\begin{array}{r}2 x-4 y=8 \\ 5 x-y=11\end{array}$
$5 x-y=11$

ANSWERS

1. $(2,5)$
2. $(-1,1)$
3. $(1,1)$
4. $(2,-1)$
