MA 110 Dr. Katiraie SECTION 4.4 MATRICES
A matrix is a two-dimensional "storage system". Several examples are listed:
$A=\left[\begin{array}{ccc}1 & 7 & 9 \\ -3 & 0 & 5\end{array}\right] \quad B=\left[\begin{array}{rr}1 & 3 \\ 2 & -4\end{array}\right] \quad C=\left[\begin{array}{cc}5 & -3 \\ 1 & 4 \\ 0 & -2 \\ 3 & -3\end{array}\right] \quad D=\left[\begin{array}{ccc}-2 & 0 & 3 \\ 1 & -1 & 2 \\ 0 & 4 & -5\end{array}\right]$
$E=\left[\begin{array}{r}0 \\ -1 \\ 7\end{array}\right] \quad F=\begin{array}{llll}3 & -9 & 4\end{array} \quad G=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad H=\left[\begin{array}{rr}2 & -3 \\ -2 & 4\end{array}\right]$
Matrices have rows (\leftrightarrow) and columns (\downarrow). The size of a matrix is given by stating its row and column dimensions in the following format: row dimension x column dimension.

Matrix A (above) is a 2×3 matrix (Read 2 by 3) since A has 2 rows and 3 columns.
List the sizes of the remaining matrices:
$A=\quad 2 \times 3$
$B=$ \qquad
\qquad $\mathrm{D}=$ \qquad
$E=$ \qquad $\mathrm{F}=$ \qquad
$\mathrm{G}=$ \qquad
\qquad

Note: F is called a row matrix and E is called a column matrix.
MATRIX MULTIPLICATION: Two matrices can be multiplied if the number of columns in the first matrix equals the number of rows in the second matrix.

For example: $B^{*} A$ is possible: B A
$2 \times 22 \times 3$ The inner dimensions match
However, A*B is NOT possible: A B
$2 \times 32 \times 2$ The inner dimensions do not match

Let's find the product $B * A(w r i t t e n B A)$.

For each of the matrix multiplications listed, explain whether or not the product is possible.
AD \qquad _

EF \qquad

FD \qquad FG \qquad

Find the product CG.

