Name \qquad

1. A bag contains 40 marbles. Seven marbles are purple, eleven are pink, and twenty-two are green.
A. A marble is selected at random, what is the probability that it is purple?
$\frac{7}{40}$
B. Two marbles are selected one after the other without replacement, what is the probability that they are both purple?
$\frac{7}{40} \cdot \frac{6}{39}$
C. Four marbles are selected at random one after the other without replacement, what is the probability that they are all purple?
$\frac{7}{40} \cdot \frac{6}{39} \cdot \frac{5}{38} \cdot \frac{4}{37}$
D. Recall there are 40 marbles in all, how many ways could a combination of 4 marbles be selected?
$C_{40,4}=91,390$
E. There are seven purple marbles, how many ways could a combination of 4 purple marbles be selected?
$C_{7,4}=35$
F. From the application of the formula $C_{n, r}=\frac{n!}{n-r!r!}$,
$C_{7,4}=\frac{7!}{7-4!4!}=\frac{7!}{3!4!}=\frac{7 \bullet 6 \cdot 5 \bullet 4 \cdot 3 \cdot 2 \bullet 1}{3 \bullet 2 \bullet 14 \cdot 3 \cdot 2 \bullet 1}=\frac{7 \bullet 6 \cdot 5 \bullet 4}{4 \bullet 3 \cdot 2 \bullet 1}$
and $C_{40,4}=\frac{40!}{40-4!4!}=\frac{40!}{36!4!}=\frac{40 \cdot 39 \cdot 38 \cdot 37 \cdot 36!}{36!4 \cdot 3 \cdot 2 \cdot 1}=\frac{40 \cdot 39 \cdot 38 \cdot 37}{4 \cdot 3 \cdot 2 \cdot 1}$

Thus, $\frac{C_{7,4}}{\mathrm{C}_{40,4}}=\frac{\frac{7 \cdot 6 \cdot 5 \cdot 4}{4 \cdot 3 \cdot 2 \cdot 1}}{\frac{40 \cdot 39 \cdot 38 \cdot 37}{4 \cdot 3 \cdot 2 \cdot 1}}=\frac{7 \cdot 6 \cdot 5 \cdot 4}{40 \cdot 39 \cdot 38 \cdot 37}=\frac{7}{40} \cdot \frac{6}{39} \cdot \frac{5}{38} \cdot \frac{4}{37}$
G. If seven marbles are selected at random one after the other without replacement, what is the probability that they are all purple?

$$
\frac{C_{7,7}}{C_{40,7}}=\frac{1}{18,643,560}=0.000000054
$$

H. If ten marbles are selected at random one after the other without replacement, what is the probability that three are purple and seven are green?

$$
\frac{C_{7,3} \cdot C_{22,7}}{C_{40,10}}=\frac{35 \cdot 170,544}{847,660,528}=0.007
$$

I. Three marbles are selected one after the other without replacement, what is the probability that they are all purple?

$$
\frac{C_{7,3}}{C_{40,3}}=\frac{35}{9880}=0.0035
$$

J. Three marbles are selected one after the other without replacement, what is the probability that exactly two are purple?

$$
\frac{\mathrm{C}_{7,2} \mathrm{C}_{33,1}}{\mathrm{C}_{40,3}}=\frac{21 \bullet 33}{9880}=\frac{693}{988}=0.07
$$

K. Three marbles are selected one after the other without replacement, what is the probability that at least two are purple?

$$
\frac{C_{7,2} C_{33,1}}{C_{40,3}}+\frac{C_{7,3}}{C_{40,3}}=\frac{693}{9880}+\frac{35}{9880}=\frac{728}{9880}=0.074
$$

2. A small college has 30 faculty members, eight from business, six from education, nine from science, and seven from math. From this group of faculty, a committee of three people will be chosen at random. What is the probability that this committee will contain
A. only faculty from science?

$$
C_{9,3} / C_{30,3}=84 / 4060=0.0207
$$

B. no people from education?

$$
C_{24,3} / C_{30,3}=2024 / 4060=0.4985
$$

C. Suppose a larger committee of ten faculty is chosen. What is the probability that five are from education and five are from math?

$$
\frac{\mathrm{C}_{6,5} \cdot \mathrm{C}_{7,5}}{\mathrm{C}_{30,10}}=\frac{6 \cdot 21}{30,045,015}=0.0000042
$$

3. A bag contains 40 marbles. Seven marbles are purple, eleven are pink, and twenty-two are green.
A. A marble is selected at random, what is the probability that it is green?
$\frac{22}{40}$
B. Two marbles are selected one after the other with replacement, what is the probability that they are both green?

$$
\frac{22}{40} \cdot \frac{22}{40}=\left(\frac{22}{40}\right)^{2}=0.55^{2}=0.3025
$$

C. Ten marbles are selected one after the other with replacement, what is the probability that they are all green?

$$
\left(\frac{22}{40}\right)^{10}=0.55^{10}=0.0025
$$

D. Ten marbles are selected one after the other with replacement, what is the probability that seven are green?

$$
\mathrm{C}_{10,7}\left(\frac{22}{40}\right)^{7}\left(\frac{18}{40}\right)^{3}=120 \cdot 0.55^{7} 0.45^{3}=0.1665
$$

