NAME \qquad

1. Two brands of a product are available - Brand A and Brand B. Of those who buy Brand $\mathrm{A}, 80 \%$ will buy it the next time. Of those who buy Brand $\mathrm{B}, 40 \%$ will buy it the next time.
A. Construct the transition matrix for this situation.

$$
\left.\mathrm{P}=\begin{array}{c}
\mathrm{A} \\
\mathrm{~B}
\end{array} \begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~B} & .8 \\
.6 & .4
\end{array}\right]
$$

B. Suppose that people tend to buy this product every week and that this week, 30% of the people buy Brand A and the rest buy Brand B. What is the initial-state distribution matrix for this situation?

$$
\left.\begin{array}{cc}
& \mathrm{A} \\
\mathrm{~S}_{0}= & \mathrm{B} \\
{[.3} & .7
\end{array}\right]
$$

C. What percentage will buy Brand A next week? Indicate the matrix multiplication you performed.
$\mathrm{S}_{0} \mathrm{P}=\left[\begin{array}{ll}.3 & .7\end{array}\right]\left[\begin{array}{ll}.8 & .2 \\ .6 & .4\end{array}\right]=\left[\begin{array}{ll}.66 & .34\end{array}\right] \quad 66 \%$ will buy brand A .
D. What percentage will buy Brand A the week after next? Indicate the matrix multiplication you performed.
$\mathrm{S}_{0} \mathrm{P}^{2}=\left[\begin{array}{ll}.3 & .7\end{array}\right]\left[\begin{array}{ll}.8 & .2 \\ .6 & .4\end{array}\right]^{2}=\left[\begin{array}{ll}.732 & .268\end{array}\right] \quad 73.2 \%$ will buy brand A .

