## MATH 120 Section 8.4 Bayes' Formula

In the preceding section, we calculated the conditional probability of a later event given an earlier event. Now we will find the probability of an earlier event given a later event.

## Bayes' Formula

$$
P\left(U_{1} \mid E\right)=\frac{P\left(U_{1} \cap E\right)}{P(E)}=\frac{\text { product of branch probabilites leading } E \text { through } U_{1}}{\text { sum of all branch products leading to } E}
$$

where $U_{1}, U_{2}, \ldots U_{n}$ are $n$ mutually exclusive events whose union is the sample space S , and E is an arbitrary event in S such that $P(E) \neq 0$.

1. A manufacturer obtains clock-radios from three different subcontractors: $10 \%$ from $A, 20 \%$ from $B$ and $70 \%$ from $C$. The defective rates for these subcontractors are $2 \%, 4 \%$ and $3 \%$ respectively. If a defective clock-radio is returned by a customer,
a) What is the probability that it came from subcontractor $A$ ?
b) What is the probability that it came from subcontractor $B$ ?
c) What is the probability that it came from subcontractor $C$ ?
2. A new, simple test has been developed to detect a particular type of cancer. The test must be evaluated before it is put into use. A medical researcher selects a random sample of 3000 adults and finds (by other means) that $3 \%$ have this type of cancer. Each of the 3000 adults is given the test, and it is found that the test indicates cancer in $95 \%$ of those who have it and in $2 \%$ of those who do not. Based on these results,
a) What is the probability of a randomly chosen person having cancer given the test indicates cancer?
b) What is the probability of a randomly chosen person having cancer given that the test does not indicate cancer?
