## MATH 120 Section 7.2 Sets

Definitions: A set is any collection of objects. Each object in a set is called a member or element of the set. A set without any elements is called the empty or null set. A finite set is a set that has a finite number of elements. An infinite set is a set with an infinite number of elements.

## Rule Method vs Listing Method for Sets

Example: 1) Complete the table.

| Rule Method | Listing Method | Finite or Infinite? |
| :---: | :---: | :---: |
| $*\{x \mid x$ is a weekend day $\}$ | \{Saturday, Sunday $\}$ |  |
| $\left\{x \mid x^{2}=4\right\}$ |  |  |
| $\{x \mid x$ is an odd counting number $\}$ |  |  |

*Read: "The set of $x$ such that $x$ is a weekend day."

## Symbols \& Notation

$\in \quad$ is an element of
$A \subset B$ : Set $A$ is a subset of set $B$ means every element of $A$ is an element of $B$.
$A=B$ : Set $A$ is equal to set $B$ if every element of $A$ is an element of $B$ AND every element of B is an element of A , that is, $A \subset B$ AND $B \subset A$.
$\varnothing=\{ \}$ is the empty set. Note: The empty set is a subset of every set.
Examples: Let $A=\{-3,-1,1,3\}, B=\{3,-3,1,-1\}, C=\{-3,-2,-1,0,1,2,3\}$. Determine if the following are true or false.

| 2) $3 \in A$ | 7) $A \subset C$ |
| :--- | :--- |
| 3) $0 \in A$ | 8) $C \subset A$ |
| 4) $A \subset B$ | 9) $A \neq C$ |
| 5) $B \subset A$ | 10) $\emptyset \subset A$ |
| 6) $A=B$ | 11) $\emptyset \subset C$ |
| 12) $\varnothing \in A$ |  |

Example: 13) List all subsets of the set $\{a, b, c\}$.

## Universal Set, Intersection \& Union

$U$ : The universal set is the set of all elements under consideration.
$A \cap B=\{x \mid x \in A$ and $x \in B\}: A$ intersect $B$ is a set of all elements in $A$ AND $B$. $A \cup B=\{x \mid x \in A$ or $x \in B\}: A$ union B is a set of all elements in $\mathrm{A} \underline{\mathrm{OR}} \mathrm{B}$ (or both).
$A^{\prime}=\{x \notin A\}$ : The complement of $A$ is the set of elements in the universal set that are not in $A$.

Examples: Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{3,6,9\}$ and $B=\{3,4,5,6,7\}$. Determine the following sets. Write using the listing method.
14) $A \cap B$
15) $A \cup B$
16) $A^{\prime}$
17) $B^{\prime}$

## Venn Diagrams



Examples: Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{3,6,9\}$ and $B=\{3,4,5,6,7\}$. Draw a Venn diagram and then answer the following:
18) $A \cap B$
19) $A \cup B$
20) $A^{\prime}$
21) $B^{\prime}$
22) $(A \cap B)^{\prime}$
23) $(A \cup B)^{\prime}$

Examples: Use the Venn Diagram to determine the indicated number of elements.
24) $n(U)$
25) $n(A \cap B)$

26) $n(A)$
27) $n(B)$
28) $n(A \cup B)$
29) $n\left(A^{\prime}\right)$
30) $n\left(B^{\prime}\right)$
31) A survey was given to 100 randomly chosen students which included the following three questions and responses.

| Do you own a TV? | Do you own a car? | Do you own a TV and a car? |
| :--- | :--- | :--- |
| 75 said yes | 45 said yes | 35 said yes |

Draw a Venn diagram and answer the following questions:
a) How many students do not own a TV?
b) How many students do not own a car?
c) How many students do not own a car or a TV?
d) How many students own a TV but not a car?
e) How many students own a car but not a TV?
f) How many students own either a TV or a car?

