MATH 120 Section 8.2 Union, Intersection, Complement of Events & Odds

Probability and Venn Diagrams

a)
$$P(A) = \frac{55}{100} = \frac{11}{20}$$

b)
$$P(B) = \frac{35}{100} = \frac{7}{20}$$

c)
$$P(A') = \frac{45}{100} = \frac{9}{20}$$

d)
$$P(B') = \frac{65}{100} = \frac{13}{20}$$

e)
$$P(A \cap B) = \frac{25}{100} = \frac{1}{4}$$

f)
$$P(A \cup B) = \frac{65}{100} = \frac{13}{2}$$

g)
$$P((A \cap B)') = \frac{75}{100} = \frac{3}{4}$$

Odds

$$P((AVB)') = \frac{35}{100} = \frac{7}{20}$$

Example: 2) If the chance of rain is 40%, what is the chance of no rain? 60%

Recall the <u>probability of an event E</u>: $P(E) = \frac{n(E)}{n(S)}$

The probability of the complement of an event: P(E') = 1 - P(E)

Example: 3) Consider the experiment of rolling a single die. Let the event be rolling a 6.

a) What is
$$P(E)$$
? = $\frac{1}{6}$

b) What is
$$P(E')$$
? = $\frac{5}{6}$

<u>Odds</u>: This is a comparison of happening: not happening for example, winning: losing

Odds for an Event = P(E): P(E') Odds Against an Event = P(E'): P(E)

Odds for an Event =
$$\frac{P(E)}{P(E')}$$
 Odds Against an Event = $\frac{P(E')}{P(E)}$

- The probability that a candidate wins an election is 0.81.
- a) What is the probability that he loses? [-0.8] = 0.9
- b) What are the odds that he wins? = $\frac{P(E)}{P(F')} = \frac{0.81}{0.19}$ odds $\Rightarrow 81:19$
- or 19 c) What are the odds that he loses? 19:81
- 5) Compute the odds in favor of
- a) Obtaining an even number in a single roll of a die.

odds in favor =
$$\frac{1}{1/2}$$
 = $\frac{1}{1/2}$

b) Obtaining a sum of 7 in a single roll of
$$P(E) = \frac{6}{36} = \frac{1}{6}$$
 $P(E') = \frac{5}{6}$

b) Obtaining a sum of 7 in a single roll of two dice. If
$$P(E') = \frac{5}{5}$$
 odd in favor $= \frac{16}{5/6} \Rightarrow \frac{1}{5}$; 1:5

6) Given the following probabilities for an event E, find the odds for and against E.

a)
$$P(E) = \frac{6}{11}$$
 $P(E') = \frac{5}{11}$

a)
$$P(E) = \frac{6}{11}$$
 $P(E') = \frac{5}{11}$ odds in favor $\frac{6/11}{5/11} = \frac{6}{5}$

$$\frac{11}{11} = \frac{6}{5}$$
 odds against = $\frac{5}{6}$

b)
$$P(E) = \frac{7}{12} P(E) \frac{12}{12} - \frac{7}{12} = \frac{5}{12}$$

b)
$$P(E) = \frac{7}{12} P(E) \frac{12}{12} - \frac{7}{12} = \frac{5}{12}$$
 olds in favor $\frac{7/12}{5/12} = \frac{7}{5}$; olds against = $\frac{5}{7}$

c)
$$P(E) = 37\% = 0.37$$
 $P(E') = 0.63$

c)
$$P(E) = 37\% = 0.37$$
 $P(E') = 0.63$ olds infavor = $\frac{0.37}{0.63} = \frac{37}{63}$; olds against = $\frac{63}{37}$

d)
$$P(E) = 0.95$$
 $P(E') = 0.05$

d)
$$P(E) = 0.95$$
 $P(E') = 0.05$ odds in favor = $\frac{0.95}{0.05} = \frac{95}{5} = \frac{19}{19}$
 $P(E') = 1 - 0.95$ odds against = $\frac{5}{95} = \frac{1}{19}$