MATH 120 Section 7.2 Sets

Definitions: A <u>set</u> is any collection of objects. Each object in a set is called a <u>member</u> or <u>element</u> of the set. A set without any elements is called the <u>empty</u> or <u>null</u> set. A <u>finite</u> set is a set that has a finite number of elements. An <u>infinite</u> set is a set with an infinite number of elements.

Rule Method vs Listing Method for Sets

Example: 1) Complete the table.

Rule Method	Listing Method	Finite or Infinite?
*{x x is a weekend day}	{Saturday, Sunday}	firite
$\{x \mid x^2 = 4\}$	{-2,2}	finite
{x x is an odd counting number}	1,3,5,7,9,}	Infinite

^{*}Read: "The set of x such that x is a weekend day."

Symbols & Notation

∈ is an element of

 $A \subset B$: Set A is a <u>subset</u> of set B means every element of A is an element of B.

A=B: Set A is <u>equal</u> to set B if every element of A is an element of B AND every element of B is an element of A, that is, $A \subset B$ AND $B \subset A$.

 $\emptyset = \{ \}$ is the empty set. Note: The empty set is a subset of every set.

Examples: Let $A = \{-3, -1, 1, 3\}$, $B = \{3, -3, 1, -1\}$, $C = \{-3, -2, -1, 0, 1, 2, 3\}$. Determine if the following are true or false.

2) 3 ∈ A	Truc	7) ACC True
	False	8) CCA False
4) A ⊂ B	Aisa subset & B True	9) A + C True
5) B ⊂ A	True	10) ØCA True
6) A = B	True	11) Ø c C True
	· .	12) Ø∈A False

Example: 13) List all subsets of the set $\{a, b, c\}$. $\{b, \{a\}, \{b\}, \{c\}\}, \{a, b\}, \{a, c\}, \{b, c\}\}$

Universal Set, Intersection & Union

U: The universal set is the set of all elements under consideration.

 $A \cap B = \{x | x \in A \text{ and } x \in B\}$: A <u>intersect</u> B is a set of all elements in A <u>AND</u> B.

 $A \cup B = \{x | x \in A \text{ or } x \in B\}$: A union B is a set of all elements in A <u>OR</u> B (or both).

 $A' = \{x \notin A\}$: The <u>complement</u> of A is the set of elements in the universal set that are not in A.

Examples: Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{3, 6, 9\}$ and $B = \{3, 4, 5, 6, 7\}$. Determine the following sets. Write using the listing method.

$$14) A \cap B = \left[3, 6\right] \quad A \text{ and } B$$

Venn Diagrams

 $A \cap B$

 $A \cup B$

A'

Examples: Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{3, 6, 9\}$ and $B = \{3, 4, 5, 6, 7\}$. Draw a Venn diagram and then answer the following:

21)
$$B' = \{1, 2, 8, 9\}$$

22)
$$(A \cap B)' = [1, 2, 4, 5, 7, 8, 9]$$

Examples: Use the Venn Diagram to determine the indicated <u>number of elements</u>.

24)
$$n(U) = 22 + 17 + 52 + 9 = 100$$

25)
$$n(A \cap B) = 52$$

26)
$$n(A) = 17 + 52 = 69$$

$$27) n(B) = 52 + 9 = 61$$

28)
$$n(A \cup B) = 17 + 52 + 9 = 78$$

29)
$$n(A') = 9 + 22 = 31$$

30)
$$n(B') = 17 + 22 = 39$$

31) A survey was given to 100 randomly chosen students which included the following three questions and responses.

Do you own a TV?	Do you own a car?	Do you own a TV and a car?
75 said yes	45 said yes	35 said yes

Draw a Venn diagram and answer the following questions:

a) How many students do not own a TV?

$$10+15=25$$
 1 $100-75=25$

b) How many students do not own a car?

$$40+15=55$$
 or $100-45=55$

c) How many students do not own a car or a TV?

d) How many students own a TV but not a car?

e) How many students own a car but not a TV?

f) How many students own either a TV or a car?