Business Calculus Drill on Derivatives!!!!!!!!!!

Derivative Drill \& Practice

- I'm going to ask you to remember some derivatives.
- It's important to be fast as time is money.
- When you think you know the answer,
- (or if you give up ${ }^{2}$) click to get to the next slide to see if 2 were correct.

What's the definition of f '(c)?

There's 2 of them!

You really need to know both of these thoroughly!

$$
\lim (h \rightarrow 0) \frac{f(c+h)-f(c)}{h}
$$

$$
\lim (x \rightarrow c) \frac{f(x)-f(c)}{x-c}
$$

What's the definition of f ' (x) ?

This is a bit different...instead of the limit being a number...it will be a function related to $f(x)$

Got it??

$$
\begin{aligned}
& \lim (h \rightarrow 0) \frac{f(x+h)-f(x)}{h} \\
& \lim (x \rightarrow t) \frac{f(x)-f(t)}{x-t}
\end{aligned}
$$

Notice that in the second definition, the arrow points to the independent variable in the final answer.

What does the derivative, $f^{\text {' }}(x)$ tell you about $\mathrm{f}(\mathrm{x})$?
(There are many answers... how many do you know?)

Here's a few:

Slope of the curve

 Instantaneous rate of change in $f(x)$ Rate of changeIf $f(x)$ is position...then velocity
If $f(x)$ is velocity...then acceleration

Now...

Here come a series of questions concerning basic derivatives you should know very quickly!

Ready?

$\mathrm{d} / \mathrm{dx}\left(\mathrm{mx} \mathrm{x}^{\mathrm{n}}\right)$

- What's your answer?

$m n x^{n-1}$

- Were you right?
(click for next question)

$d / d x\left(e^{f(x)}\right)$

- What is your answer?

$f^{\prime}(x) e^{f(x)}$

- Were you right?
(click for next question)

$\mathrm{d} / \mathrm{dx}(\ln |x|)$

- What is your answer?

1/x

- Were you right?
(click for next question)

$d / d x\left(a^{x}\right)$

- What's your answer...eh?

$(\ln a) a^{x}$

- Were you right?
(click for next question)

I dig this calculus stuff!!

$d / d x(\ln f(x))$

-Ready?

$f^{\prime}(x) / f(x)$

- Were you right?
(click for next question)

$\mathrm{d} / \mathrm{dx}\left(\mathrm{a}^{\mathrm{f}(\mathrm{x})}\right)$

- Go go go go!!!!!

$(\ln a) f^{\prime}(x) a^{f(x)}$

- Were you right?
(click for next question)

Hit that ball!!

$d / d x(f(x) g(x))$

- It's the Product Rule!
- (don’t flush it!!!)

$f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

Yeah...I know you know it...but l'm afraid...

Promise me you will remember to use the product rule every time you take the derivative of a product! OK??

$\mathrm{d} / \mathrm{dx}(\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}))$

- It's the merry mighty Quotient Rule!!

Pleeeezzze!

Don't get the numerator backwards.

$$
\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

$\mathrm{d} / \mathrm{dx}(\mathrm{f}(\mathrm{g}(\mathrm{x})))$

Chain chain chain.... 厄
Chain of foooools! $\sqrt{ }$ J J

Yeah yeah...you're good now...

But what about that Chain Rule?

$$
f^{\prime}(g(x)) \bullet g^{\prime}(x)
$$

Don't forget all three steps!

1) Derivative of outside
2) Copy inside
3) Multiply by the "derivative of inside"

$d / d x(y)$

Are you confused yet?

$d y / d x$

- Did I trick you ?

Ha ha...I did trick you!

Variable to a variable power - you can't do it....unless you take the natural log first...

$$
\begin{gathered}
y=x^{x} \\
\ln y=x \ln x \\
(1 / y)(d y / d x)=x(1 / x)+1 \ln x \\
d y / d x=y(1+\ln x)
\end{gathered}
$$

OK...switching to Related Rates

For the rest of the questions, pretend you are doing a related rates problem.

That is..."t" is the independent variable...

For each expression, give the derivative as you would in a Related Rates problem.

Here we go!!!

y

$d y / d t$

Ready to proceed?

Dr. K is

PROUD of ya!

Goodbye!

Be sure to run the power points again and again until you are confident with Derivatives.

