\qquad

Find the derivative of the function.

$$
y^{\prime}=\frac{\left(\frac{1}{x+8}\right)(5-6 x)-(-6) \ln (x+8)}{(5-6 x)^{2}}=\frac{1}{(x+8)(5-6 x)}+\frac{6 \ln (x+8)}{(5-6 x)^{2}}
$$

Solve the problem.
2) Assume the total revenue from the sale of x items is given by $R(x)=39 \ln (8 x+1)$, while the total cost to produce $\begin{aligned} & x \text { items is } C(x)=x / 5 \text {. Find } \\ P(x)= & R(x)-C(x), \text { is maximum. }\end{aligned}$

$$
\begin{aligned}
& P(x)=39 \ln (8 x+1)-\frac{x}{5} \\
& P^{\prime}(x)=39\left(\frac{1}{8 x+1}\right) \cdot 8-\frac{1}{5}=0
\end{aligned}
$$

$$
8 x=1559
$$

$$
\begin{aligned}
& \qquad \frac{312}{8 x+1}=\frac{1}{5} \Longrightarrow 1560=8 x+1 \Longrightarrow x=194.88 \mathrm{~N} \\
& \text { 3) Suppose that the demand function for } x \text { units of a certain item is } p=110+\frac{200 \ln (x+5)}{x} \text {, where } p \text { is the price per }
\end{aligned}
$$ unit, in dollars, Find the marginal revenue. $(R(x)=x \cdot P)$

$$
\begin{aligned}
& R(x)=x \cdot p=x\left(110+\frac{200 \ln (x+5)}{x}\right)=110 x+200 \ln (x+5) \\
& R^{\prime}(x)=110+\frac{200}{x+5}
\end{aligned}
$$

4) The population of coyotes in the northwestern portion of Alabama is given by the formula $p(t)=\left(t^{2}+100\right) \ln (t+2)$, where t represents the time in years since 2000 (the year 2000 corresponds to $t=0$). Find the rate of change of the coyote population in $2008(t=8)$.

$$
\begin{aligned}
& p^{\prime}(t)=2 t \ln (t+2)+\left(t^{2}+100\right) \frac{1}{t+2} \\
& p^{\prime}(8)=2(8) \ln (8+2)+\left(8^{2}+100\right) \frac{1}{8+2}=53.24 \approx 53 \frac{\text { Coyotes }}{\text { year }}
\end{aligned}
$$

a) $\ln x^{4}-2 \ln x=1$

$$
\begin{aligned}
& \ln x^{4}-\ln x^{2}=1 \\
& \ln \frac{x^{4}}{x^{2}}=1 \\
& \ln x^{2}=1
\end{aligned} \rightarrow x^{2}=e
$$

b) $\ln (x+1)-\ln (x-2)=1$

$$
\begin{aligned}
& \ln \left(\frac{x+1}{x-2}\right)=1 \\
& \frac{x+1}{x-2}=\frac{e}{1} \\
& x+1=e(x-2)
\end{aligned}
$$

6) A sample of 8 grams of radioactive material is placed in a vault. Let $P(t)$ be the amount remaining after t years. And suppose that $\mathrm{P}(\mathrm{t})$ satisfies the differential equation $P^{\prime}(t)=-.021 P(t)$
a) Find the formula for $\mathrm{P}(\mathrm{t})$

$$
P(t)=8 e
$$

b) What is $\mathrm{P}(0)$?

$$
=8 \text { grams }
$$

c) What is the decay constant?

$$
0.021
$$

d) How much of the material will remain after 10 years?

$$
P(10)=8 e^{-0.021(10)}=6.48 \text { Grams }
$$

e) Use the differential equation to determine how fast the sample is disintegrating when just one gram remains.

$$
p^{\prime}=-0.021(1)=-0.021 \frac{\text { grams }}{\text { year }}
$$

f) What amount of radioactive material remains when it is disintegrating at the rate of .105 grams per year?

$$
-0.105=-0.021 p(t) \Longrightarrow p(t)=\frac{-0.105}{-0.021}=5 \text { grams }
$$

g) The radial material has half life of 33 years. How much will remain after 66 years 2 grams
Initially there was 8 grams of radioactive material After 33 years 4 grams of material $\left(\frac{1}{2}\right.$ \& 8$)$. After 66 yeans 2 grams of material $(1 / 2$ of 4).
7) Four thousand dollars is deposited into a saving account at 3.5% interest compounded continuously.
a) What is the formula for $A(t)$, the balance after t years?

$$
A(t)=4000 e^{0.035 t}
$$

b) What differential equation is satisfied by $\mathrm{A}(\mathrm{t})$, the balance after t years.

$$
A^{\prime}(t)=0.035 A(t)
$$

c) How much money will be in the account after 2 years?

$$
A(2)=400 e^{0.035(2)}=4290.03
$$

d) When will the balance reach $\$ 5000$?

$$
\begin{aligned}
& 5000=4000 e^{0.035 t} \\
& \frac{5000}{4000}=e^{0.035 t} \\
& \ln (5 / 4)=t a e^{0.035 t} \\
& \frac{\ln (5 / 4)}{0.035}=t
\end{aligned}
$$

e) How fast is the balance growing when it reaches $\$ 5000$?

$$
\begin{aligned}
A^{\prime} & =0.035 A(t) \\
& =0.035(5000)=175 \text { per year }
\end{aligned}
$$

