MA 160 Dr. Katiraie

1. Flu is spreading through a small school. At time t days after the beginning of the epidemic, there are $N(t)$ students sick, where $N(t)=20 t-t^{2}$. What is the average rate of change of the number of sick students from $t=2$ to $t=5$? Interpret your answer in a sentence, using appropriate units.

From the $2^{\text {nd }}$ to the $5^{\text {th }}$ day after the beginning of the epidemic, it is spreading at a rate of 13 students per day.
2. The function f is defined by the graph shown. Based on this graph,
(a) $\quad \lim _{x \rightarrow-1^{-}} f(x)=3$
(b) $\quad \lim _{x \rightarrow-1^{+}} f(x)=3$
(c) $\quad \lim _{x \rightarrow-1} f(x)=3$
(d) $f(-1)=5$
(e) Is f continuous at $\mathrm{x}=-1$? Why or why not? Use limits in your answer.
Not continuous because $\lim _{x \rightarrow-1} f(x) \neq f(-1)$
(f) $\quad \lim _{x \rightarrow 3^{-}} f(x)=-5$
(g) $\lim _{x \rightarrow 3^{+}} f(x)=2$

(h) $\lim _{x \rightarrow 3} f(x) D N E$
(i) $\quad f(3)=-5$
(j) Is f continuous at $\mathrm{x}=3$? Why or why not? Use limits in your answer.

Not continuous because $\lim _{x \rightarrow 3} f(x)$ does not exist.
(k) Is f continuous at $\mathrm{x}=2$? Why or why not? Use limits in your answer.

It is continuous because $\lim _{x \rightarrow 2} f(x)=f(2)$.
3. Find each limit algebraically. If the limit does not exist, state this.
(a) $\lim _{x \rightarrow 3} \frac{5}{x}=\frac{5}{3}$
(b) $\quad \lim _{x \rightarrow 2} \frac{x}{x-2} D N E$
(c) $\lim _{x \rightarrow 3} \frac{x^{2}+5 x-24}{x^{2}+x-12}=\frac{11}{7}$
4. The graph of a function $f(x)$ is shown. Based on this graph, for each value of x given, state whether $f^{\prime}(x)$ is positive, negative, or zero.

x	Is $f^{\prime}(x)$ zero, negative or positive?
-4	positive
0	negative
1	zero

5. The graph of a function $f(x)$ and its tangent
line at $x=3$ are shown. The equation of the tangent line is $y=10 x-14$. Based on this graph, determine the value of
(a) $\quad f(3)=16$
(b) $\quad f^{\prime}(3)=10$

9. The graph of $f^{\prime}(x)$, the derivative of a function f is shown.
(a) On what intervals is the function f increasing? $(3, \infty)$
(b) On what intervals is the function f decreasing? $(-\infty, 3)$

(c) At what value of x , if any, does f have a local minimum? $\mathrm{x}=3$
(d) At what value of x , if any, does f have a local maximum? None
(e) If it is also known that $f(0)=0$, sketch a possible graph of f.

10. Suppose it is known that $f^{\prime}(x)>0$ for all x and $f^{\prime \prime}(x)<0$ for all x . Which of the following could be the graph of $f(x)$?

Answers for problems on Review Sheet for Test \#1

1. $A(x)=x\left(\frac{500-5 x}{2}\right)=250 x-\frac{5}{2} x^{2}$
2.

(a) $x=0$
(b) $x=-2, x=0$
(c) Yes
(d) No

