1. Flu is spreading through a small school. At time t days after the beginning of the epidemic, there are N(t) students sick, where $N(t) = 20t - t^2$. What is the average rate of change of the number of sick students from t = 2 to t = 5? Interpret your answer in a sentence, using appropriate units.

From the 2nd to the 5th day after the beginning of the epidemic, it is spreading at a rate of 13 students per day.

2. The function f is defined by the graph shown. Based on this graph,

(a)
$$\lim_{x \to -1^{-}} f(x) = 3$$

(b)
$$\lim_{x \to -1^+} f(x) = 3$$

(c)
$$\lim_{x \to -1} f(x) = 3$$

(d)
$$f(-1) = 5$$

(e) Is f continuous at x = -1? Why or why not? Use limits in your answer. Not continuous because $\lim_{x \to -1} f(x) \neq f(-1)$

(f)
$$\lim_{x \to 3^{-}} f(x) = -5$$

(g)
$$\lim_{x \to 3^+} f(x) = 2$$

-10

- (j) Is f continuous at x = 3? Why or why not? Use limits in your answer. Not continuous because $\lim_{x \to 3} f(x)$ does not exist.
- (k) Is f continuous at x = 2? Why or why not? Use limits in your answer. It is continuous because $\lim_{x\to 2} f(x) = f(2)$.

3. Find each limit algebraically. If the limit does not exist, state this.

(a)
$$\lim_{x\to 3} \frac{5}{x} = \frac{5}{3}$$

(b)
$$\lim_{x \to 2} \frac{x}{x - 2} DNE$$

(c)
$$\lim_{x \to 3} \frac{x^2 + 5x - 24}{x^2 + x - 12} = \frac{11}{7}$$

4. The graph of a function f(x) is shown. Based on this graph, for each value of x given, state whether f'(x) is positive, negative, or zero.

X	Is $f'(x)$ zero, negative or positive?
-4	positive
0	negative
1	zero

5. The graph of a function f(x) and its tangent line at x = 3 are shown. The equation of the tangent line is y = 10x - 14. Based on this graph, determine the value of

(a)
$$f(3) = 16$$

(b) f'(3) = 10

- 9. The graph of f'(x), the derivative of a function f is shown.
- On what intervals is the function f increasing? (a) $(3,\infty)$
- On what intervals is the function f decreasing? (b) $(-\infty,3)$
- At what value of x, if any, does f have a local minimum? (c) x = 3
- (d) At what value of x, if any, does f have a local maximum? None
- (e) If it is also known that f(0) = 0, sketch a possible graph of f.

Suppose it is known that f'(x) > 0 for all x and f''(x) < 0 for all x. Which of the 10. following could be the graph of f(x)?

Answers for problems on Review Sheet for Test #1

1.
$$A(x) = x \left(\frac{500 - 5x}{2} \right) = 250x - \frac{5}{2}x^2$$

- 2.
 - (a) x = 0 (b) x = -2, x = 0 (c) Yes
- (d) No