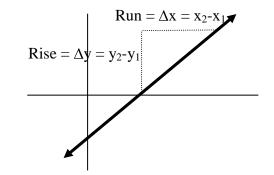
MA 160 Sections 1.3, 1.4

I. Slope and Linear Functions

1. The **slope** *m* of the line passing through the points (x_1, y_1) and (x_2, y_2) is defined by

$$\begin{split} m &= \frac{Rise}{Run} = \frac{vertical \ change}{horizontal \ change} = \frac{\Delta y}{\Delta x} \\ &= \frac{difference \ in \ y}{difference \ in \ x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}, \ where \ x_1 \neq x_2 \end{split}$$



Use the slope formula to find the slope of the line containing the points

2. You can use either of the following to find the equation of a line.

Slope-Intercept Equation	Point-Slope Equation
y = mx + b or $f(x) = mx + b$	$y - y_1 = m(x - x_1)$
The line has slope m and y-intercept $(0,b)$.	The line has slope <i>m</i> and contains the point (x_1, y_1) .

Write an equation of the line through each pair of points in question #1 above. You may use either equation above, but write the answer in the form y = mx + b.

(a)	(b)

3. The slope of a line is a measure of the rate at which a line is changing. For that reason, it is also called the **rate of change** of the line.

In 1991, the cost of tuition and fees at public two-year colleges was \$800. This cost had increased to \$1300 by 1996. Find the average rate of change of the cost of tuition and fees during this time period. Write a sentence interpreting your answer. Be sure to use appropriate units.

4.	High blood pressure in me	en
		1

Age of	Percentage of males with	
male	high blood pressure	
30	7.3	
40	12.1	
50	20.4	
60	24.8	
70	34.9	

(a) Using the points (40, 12.1) and (60, 24.8) from the data above, find a linear function that fits the given data.

(b) Use the function to estimate the percentage of 55-year-old men with high blood pressure.

II. Power Functions

A function of the form $f(x) = x^a$ is called a power function. In Calculus, we will often have to rewrite expressions involving negative exponents or radicals in the form $f(x) = Cx^a$, where C is a constant, in order to apply certain formulas to the function.

For example, each of the following functions can be rewritten in this form:

- $f(x) = \frac{1}{x^3}$ can be rewritten as $f(x) = x^{-3}$
- $f(x) = \frac{5}{x^4}$ can be rewritten as $f(x) = 5x^{-4}$
- $f(x) = \sqrt[3]{x^2}$ can be rewritten as $f(x) = x^{2/3}$
- $f(x) = -\frac{7}{\sqrt{x}}$ can be rewritten as $f(x) = -7x^{-1/2}$

Rewrite each function below in the form $f(x) = Cx^{a}$.

$\int_{5.} f(x) = \frac{1}{x^8}$	$f(x) = \frac{3}{x^2}$	7. $f(x) = 6\sqrt{x}$
$\begin{array}{c} 8. f(x) = \sqrt[3]{x^4} \end{array}$	9. $f(x) = -6\sqrt{x^3}$	10. $f(x) = \frac{5}{\sqrt[4]{x}}$

For the answers to all of these problems, go to our course website at www.montgomerycollege.edu/~jriseber/160home.htm and click the link for Course Documents.