MA 160 Dr. Katiraie The Derivative of the Natural Logarithm Function
Section 3.5

1. Consider the function $f(x)=\ln x$. So far, we have not found a formula for the derivative of this function. To find such a formula, recall that the natural logarithmic function can be rewritten as an exponential function.

Since $f(x)=\ln x$ means $f(x)=\log _{e} x$, it can be rewritten in exponential form as $e^{f(x)}=x$. Differentiate this function, remembering to use the Chain Rule. Solve for $f^{\prime}(x)$ and write your answer so that it is in terms of x only (not $\mathrm{f}(\mathrm{x})$).
2. Use the formula that you developed above to differentiate each of the following functions and simplify your answer.

| (a) $y=x(\ln x)$ | (b) $y=\frac{\ln x}{x^{2}}$ | (c) $y=(\ln x)^{5}$ |
| :--- | :--- | :--- | :--- |
| | | |

3. Write the equation of the tangent line to the function $y=5 \ln x+3 x^{2}$ when $\mathrm{x}=1$ on the curve.
4. Suppose we have a composite function of the form $h(x)=\ln (g(x))$. Let

$$
f(x)=\ln (x) . \text { Then } h(x)=f(g(x))=\ln (g(x))
$$

By the Chain Rule, the derivative of this function is

$$
h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\frac{1}{g(x)} \cdot g^{\prime}(x)=\frac{g^{\prime}(x)}{g(x)} .
$$

Thus, the derivative of the natural logarithm of a function is the derivative of the function divided by the function.
For example, if $y=\ln \left(x^{2}+3\right)$, then $y^{\prime}=\frac{1}{x^{2}+3} \cdot \frac{d\left(x^{2}+3\right)}{d x}=\frac{1}{x^{2}+3} \cdot 2 x=\frac{2 x}{x^{2}+3}$
5. Use the formula from \#4 to differentiate the following functions.

(a) $y=\ln (5 x+2)$	(b) $y=\ln \left(x^{3}+2\right)$

Selected answers:
2. (a) $1+\ln x$
(b) $\frac{1-2 \ln x}{x^{3}}$
(c) $\frac{5(\ln x)^{4}}{x}$
3. $y=11 x-8$
5. (a) $\frac{5}{5 x+2} \quad$ (b) $\frac{3 x^{2}}{x^{3}+2}$

