MA 160 Dr. Katiraie
Shortcuts to Finding Derivatives
Section 3.1

1. Find the derivative of each function below and write your answers with no negative exponents.
(a) $\quad f(x)=x^{3}-5 x^{2}+11 x-6$
(b) $g(x)=\frac{6}{x^{3}}$
(c) $y=(x+4)(x-7)$ Hint: First expand the expression.
(d) $\quad f(x)=8 e^{x}+\frac{x^{2}}{5}$
(e) $\quad g(w)=\frac{w^{4}-5 w^{2}-3}{w^{2}}$ (Hint: First write the expression as three separate fractions.)
(f) $y=\left(2 x^{2}\right)^{3}$
(Hint: First simplify using properties of exponents.)
2. If $f(x)=4 \sqrt{x}-\frac{2}{\sqrt{x}}$, find
(a) $f^{\prime}(x)$
(b) $\quad f^{\prime}(4)$

3. Write the equation of the tangent line to $f(x)=x^{4}-3 x^{3}+7 x-8$ when $\mathrm{x}=2$ on the curve.
4. The equation of motion of a moving object is $s=2 t^{2}+t^{3 / 2}$, where a is measured in feet and t is the time in seconds. Find each of the following and use appropriate units in your answers.
(a) The velocity after 4 seconds (b) The acceleration after 4 seconds
5. The average price for a major league baseball game x years after 1990 can be modeled by $p(x)=9.41-0.19 x+0.09 x^{2}$.
(a) Use the model to find the instantaneous rate of change of the average ticket price in 2007.
(b) In a sentence, explain the meaning of your answer to part (a). Use appropriate units.

Answers

1 (a) $3 x^{2}-10 x+11$
(b) $-\frac{18}{x^{4}}$
(c) $2 x-3$
(d) $8 e^{x}+\frac{2}{5} x$
(e) $2 w+\frac{6}{w^{3}}$
(f) $48 x^{5}$

2 (a) $\frac{2}{\sqrt{x}}+\frac{1}{\sqrt{x^{3}}}$
(b) $\frac{9}{8}$
3. $y=3 x-8$

4 (a) $19 \mathrm{ft} / \mathrm{sec}$
(b) $4.375 \mathrm{ft} / \mathrm{sec}^{2}$

5(a) \$2.87/year
(b) In 2007, the average ticket price of a major league baseball ticket was increasing at a rate of $\$ 2.87$ per year.

