MA 160 Dr. Katiraie USING THE PRODUCT AND QUOTIENT RULES
Section 3.3

1. Use the product rule to find each derivative.

(a) $f(x)=(3 x-1)(2 x+5)$	(c) $f(x)=\left(x^{3}+5\right)\left(3 x^{2}-7\right)$	
		(d) $\quad f(x)=(2 \sqrt{x}-3)\left(x^{3}-5 e^{x}\right)$ Note: Just use the product rule; do not simplify your answer.
(b) $f(x)=x^{3} e^{x}$		

2. If f is a differentiable function of x and $g(x)=\sqrt[3]{x} f(x)$,
(a) Find an expression for the derivative of $g(x)$ in terms of $f(x)$ and $f^{\prime}(x)$.
(b) If it is known that $f(8)=12$ and $f^{\prime}(8)=5$, find $g^{\prime}(8)$.

3. Differentiate each quotient and simplify your results.

(a) $f(x)=\frac{3 x+1}{3 x-1}$	(c). $f(x)=\frac{x^{2}+8 x+7}{\sqrt{x}}$
(b) $f(x)=\frac{x}{x^{2}+1}$	(d) $f(x)=\frac{x^{2}+x-2}{x^{2}+5}$

4. Find the equation of the tangent line to the function $f(x)=\frac{x^{2}+1}{x-1}$ when $\mathrm{x}=3$ on the curve.

Answers

1. (a) $(3 x-1) 2+(2 x+5) 3=12 x+13$
(b) $x^{3} e^{x}+e^{x} 3 x^{2}=x^{2} e^{x}(x+3)$
(c) $\left(x^{3}+5\right)(6 x)+\left(3 x^{2}-7\right)\left(3 x^{2}\right)$ $=15 x^{4}-21 x^{2}+30 x=3 x\left(5 x^{3}-7 x+10\right)$
(d) $(2 \sqrt{x}-3)\left(3 x^{2}-5 e^{x}\right)+\frac{x^{3}-5 e^{x}}{\sqrt{x}}$
2. (a) $x^{1 / 3} f^{\prime}(x)+\frac{f(x)}{3 x^{2 / 3}}$
(b) 11
3.

(a) $-\frac{6}{(3 x-1)^{2}}$
(b) $\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$
3. (c)
$\frac{3}{2} x^{1 / 2}+\frac{4}{x^{1 / 2}}-\frac{7}{2 x^{3 / 2}}$
(d) $\frac{-x^{2}+14 x+5}{\left(x^{2}+5\right)^{2}}$
4. $y=\frac{1}{2} x+\frac{7}{2}$

