1. Consider the function $f(x)=\ln x$. So far, we have not found a formula for the derivative of this function. To find such a formula, rewrite $f(x)=\ln x$ in exponential form as follows:

$$
\begin{aligned}
f(x) & =\ln x \\
e^{f(x)} & =e^{\ln x} \\
e^{f(x)} & =x
\end{aligned}
$$

Now differentiate $e^{f(x)}=x$, remembering to use the Chain Rule. Solve for $f^{\prime}(x)$ and write your answer so that it is in terms of x only (not $f(x)$).
2. Use the formula that you developed above to differentiate each of the following functions and simplify your answer.

(a) $y=x(\ln x)$	(b) $y=\frac{\ln x}{x^{2}}$	(c) $y=(\ln x)^{5}$

3. Write the equation of the tangent line to the function $y=5 \ln x$ when $x=1$ on the curve.
4. Use the Chain Rule to extend the formula from \#1 above to find the derivative of $f(x)=\ln [g(x)]$.
5. Use the formula from \#4 to differentiate the following functions.

(a) $y=\ln (5 x+2)$	(b) $y=\ln \left(x^{3}+2\right)$

6. Write the equation of the tangent line to $y=\ln \left(4 x+e^{2}\right)$ at $x=0$ on the curve. Use exact values, not approximations, in your answer.
7. For what value or values of x does $y=\frac{\ln x}{x^{2}}$ have a horizontal tangent line? Use exact values, not approximations, in your answer.

Selected answers:
2. (a) $1+\ln x$
(b) $\frac{1-2 \ln x}{x^{3}}$
(c) $\frac{5(\ln x)^{4}}{x}$
$y=5 x-5$
5. (a) $\frac{5}{5 x+2}$
(b) $\frac{3 x^{2}}{x^{3}+2}$
6. $y=\frac{4}{e^{2}} x+2$
7. $x=\sqrt{e}$

