1. Consider the function $f(x) = \ln x$. So far, we have not found a formula for the derivative of this function. To find such a formula, rewrite $f(x) = \ln x$ in exponential form as follows:

$$f(x) = \ln x$$
$$e^{f(x)} = e^{\ln x}$$
$$e^{f(x)} = x$$

Now differentiate $e^{f(x)} = x$, remembering to use the Chain Rule. Solve for f'(x) and write your answer so that it is in terms of x only (not f(x)).

2. Use the formula that you developed above to differentiate each of the following functions and simplify your answer.

(a) $y = x(\ln x)$	(b) $y = \frac{\ln x}{x^2}$	(c) $y = (\ln x)^5$

3. Write the equation of the tangent line to the function $y = 5 \ln x$ when x = 1 on the curve.

- 4. Use the Chain Rule to extend the formula from #1 above to find the derivative of $f(x) = \ln[g(x)]$.
- 5. Use the formula from #4 to differentiate the following functions.

(a)	$y = \ln(5x+2)$	(b)	$y = \ln(x^3 + 2)$

6. Write the equation of the tangent line to $y = \ln(4x + e^2)$ at x = 0 on the curve. Use exact values, not approximations, in your answer.

7. For what value or values of x does $y = \frac{\ln x}{x^2}$ have a horizontal tangent line? Use exact values, not approximations, in your answer.

Selected answers:

2. (a)
$$1 + \ln x$$
 (b) $\frac{1 - 2\ln x}{x^3}$ (c) $\frac{5(\ln x)^4}{x}$ 3. $y = 5x - 5$
5. (a) $\frac{5}{5x + 2}$ (b) $\frac{3x^2}{x^3 + 2}$ 6. $y = \frac{4}{e^2}x + 2$ 7. $x = \sqrt{e}$