Section 1.2 Graphs of Equations in Two Variables

I Graph Equations by Hand by Plotting Points

Determining Whether a Point Is on the Graph of an Equation

Determine if the following points are on the graph of the equation -3x + y = 6

Graphing an Equation by Hand by Plotting Points

Graph the equation: y = 2x + 5

If	Then	Point on Graph
x = 0	y = 2(0) + 5 = 5	(0, 5)
x = 1	y = 2(1) + 5 = 7	(1, 7)
x = -5	y = 2(-5) + 5 = -5	(-5, -5)
x = 10	y = 2(10) + 5 = 25	(10, 25)
	$\begin{array}{c} y \\ 25 \\ (10, 25) \\ (0, 5) \\ -25 \\ (-5, -5) \\ \end{array}$	

-25

Graphing an Equation by Hand by Plotting Points Graph the equation: $y = x^2$

x	$y = x^2$	(x, y)	
-4	16	(-4, 16)	<i>У</i> •
-3	9	(-3, 9)	20 - 🦼
-2	4	(-2, 4)	(-4, 16)
-1	1	(-1, 1)	
0	0	(0, 0)	(-3, 9) 10 (3, 9)
1	1	(1, 1)	(-2, 4) 5 - $(2, 4)$
2	4	(2, 4)	(-1, 1) $(1, 1)$
3	9	(3, 9)	-4 (0, 0) 4 x
4	16	(4, 16)	

2 Graph Equations Using a Graphing Utility

Steps for Graphing an Equation Using a Graphing Utility

- **STEP 1:** Solve the equation for y in terms of x.
- **STEP 2:** Get into the graphing mode of your graphing utility. The screen will usually display Y = 0, prompting you to enter the expression involving x that you found in Step 1. (Consult your manual for the correct way to enter the expression; for example, $y = x^2$ might be entered as x^2 or as x^*x or as xx^Y2).
- **STEP 3:** Select the viewing window. Without prior knowledge about the behavior of the graph of the equation, it is common to select the **standard viewing window**^{*} initially. The viewing window is then adjusted based on the graph that appears. In this text, the standard viewing window will be

$X \min = -10$	$Y \min = -10$
Xmax = 10	Ymax = 10
Xscl = 1	Yscl = 1

STEP 4: Graph.

STEP 5: Adjust the viewing window until a complete graph is obtained.

Graphing an Equation on a Graphing Utility

Graph the equation: $6x^2 + 3y = 36$

STEP 1: We solve for y in terms of x.

$$6x^{2} + 3y = 36$$
$$3y = -6x^{2} + 36$$
$$y = -2x^{2} + 12$$

STEP 2: From the graphing mode, enter the expression $-2x^2 + 12$ after the prompt Y =

STEP 3: Set the viewing window to the standard viewing window.

STEP 4: Graph.

STEP 5: The graph of $y = -2x^2 + 12$ is not complete The value of Ymax must be increased

Steps for Creating a Table of Values Using a Graphing Utility

- **STEP 1:** Solve the equation for y in terms of x.
- **STEP 2:** Enter the expression in x following the Y = prompt of the graphing utility.
- **STEP 3:** Set up the table. Graphing utilities typically have two modes for creating tables. In the AUTO mode, the user determines a starting point for the table (TblStart) and Δ Tbl (pronounced "delta-table"). The Δ Tbl feature determines the increment for x. The ASK mode requires the user to enter values of x and then the utility determines the corresponding value of y.
- **STEP 4:** Create the table. The user can scroll within the table if the table was created in AUTO mode.

Creating a Table Using a Graphing Utility

Create a table that displays the points on the graph of $6x^2 + 3y = 36$ for x = -3, -2, -1, 0, 1, 2, and 3.

STEP 1: We solved the equation for y and obtained $y = -2x^2 + 12$.

STEP 2: Enter the expression in x following the Y = prompt.

STEP 3: We set up the table in the AUTO mode with TblStart = -3 and Δ Tbl = 1.

STEP 4: Create the table.

TABLE SE TblStar △Tbl=1 Indent: Depend:	ETUP ~t=-3 Futc	Ask Ask

4 Find Intercepts from a Graph

Finding Intercepts from a Graph

Find the intercepts of the graph.

5 Find Intercepts from an Equation

Procedure for Finding Intercepts

- **1.** To find the *x*-intercept(s), if any, of the graph of an equation, let y = 0 in the equation and solve for *x*.
- 2. To find the y-intercept(s), if any, of the graph of an equation, let x = 0 in the equation and solve for y.

Finding Intercepts from an Equation

Find the *x*-intercept(s) and the *y*-intercept(s) of the graph of $y = x^2 - 4$.

X	Y1	
PNH OHNM	nontron	
Y1∎X2·	-4	

Finding Intercepts Using a Graphing Utility

Use a graphing utility to approximate the intercepts of the equation

 $y = x^3 - 16.$

A graph is said to be symmetric with respect to the x-axis if, for every point (x, y) on the graph, the point (x, -y) is also on the graph.

Symmetry with respect to the *x*-axis A graph is said to be symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

A graph is said to be symmetric with respect to the origin if, for every point (x, y) on the graph, the point (-x, -y) is also on the graph.

to the origin

A graph is said to be symmetric with respect to the x-axis if, for every point (x, y) on the graph, the point (x, -y) is also on the graph.

A graph is said to be symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

A graph is said to be symmetric with respect to the origin if, for every point (x, y) on the graph, the point (-x, -y) is also on the graph.

Symmetric Points

If a graph is symmetric with respect to the *x*-axis and the point (-2, 3) is on the graph, then what point is also on the graph?

If a graph is symmetric with respect to the *y*-axis and the point (-1, 3) is on the graph, then what point is also on the graph?

If a graph is symmetric with respect to the origin and the point (-1, 3) is on the graph, then what point is also on the graph?

Tests for Symmetry

To test the graph of an equation for symmetry with respect to the

x-Axis Replace y by -y in the equation. If an equivalent equation results, the graph of the equation is symmetric with respect to the x-axis.
y-Axis Replace x by -x in the equation. If an equivalent equation results, the graph of the equation is symmetric with respect to the y-axis.
Origin Replace x by -x and y by -y in the equation. If an equivalent equation results, the graph of the graph of the equation is symmetric with respect to the y-axis.

Finding Intercepts and Testing an Equation for Symmetry

For the equation $y = \frac{x^2 - 9}{x^2 + 2}$ find the intercepts and test for symmetry.

Solution

The x intercepts are -3 and 3; the y intercept is $-\frac{9}{2}$.

x-Axis: NO *y-Axis:* YES *origin:* NO

8 Know How to Graph Key Equations

Graphing the Equation $y = x^3$ by Finding Intercepts and Checking for Symmetry

Graph the equation $y = x^3$ by hand by plotting points. Find any intercepts and check for symmetry first.

EXAMPLE Graphing the Equation $x = y^2$

Graph the equation $x = y^2$.

Find any intercepts and check for symmetry first.

Solution *x*-*Axis symmetry* $x = y^2$ (x, y)y (0, 0)0 0 (1, 1)4 2 (4, 2)9 3 (9, 3)

X	Y1	Yz -
-1 0 12355	ERROR 0 1 1.4142 1.7321 2 2.2361	ERROR 0 -1 -1.414 -1.732 -2 -2.236

Graphing the Equation y =Х Graph the equation $y = \frac{1}{x}$.

Find any intercepts and check for symmetry first.

