Section 4.5

Properties of Logarithms

OBJECTIVE 1

Work with the Properties of Logarithms

```
EXAMPLE
```


Establishing Properties of Logarithms

(a) Show that $\log _{a} 1=0$.
(b) Show that $\log _{a} a=1$.

$$
\log _{a} 1=0 \quad \log _{a} a=1
$$

Properties of Logarithms

In the properties given next, M and a are positive real numbers, with $a \neq 1$, and r is any real number.
The number $\log _{\text {a }} M$ is the exponent to which a must be raised to obtain M.

$$
a^{\log _{a} M}=M
$$

The logarithm to the base a of a raised to a power equals that power.

$$
\log _{a} a^{r}=r
$$

EXAMPLE

Using Properties (1) and (2)
$\begin{array}{lll}\text { (a) } 2^{\log _{2} \pi}=\pi & \text { (b) } \log _{0.2} 0.2^{-\sqrt{2}}=-\sqrt{2} & \text { (c) } \ln e^{k t}=k t\end{array}$

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, with $a \neq 1$, and r is any real number.

The Log of a Product Equals the Sum of the Logs

$$
\begin{equation*}
\log _{a}(M N)=\log _{a} M+\log _{a} N \tag{3}
\end{equation*}
$$

The Log of a Quotient Equals the Difference of the Logs

$$
\begin{equation*}
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N \tag{4}
\end{equation*}
$$

The Log of a Power Equals the Product of the Power and the Log

$$
\begin{equation*}
\log _{a} M^{r}=r \log _{a} M \tag{5}
\end{equation*}
$$

OBJECTIVE 2

Write a Logarithmic Expression as a Sum or Difference of Logarithms

EXAMPLE

Writing a Logarithmic Expression as a Sum of Logarithms Write $\log _{2}\left(x^{2} \sqrt[3]{x-1}\right), x>1$, as a sum of logarithms. Express all powers as factors.

EXAMPLE

Writing a Logarithmic Expression as a Difference of Logarithms Write $\log _{6} \frac{x^{4}}{\left(x^{2}+3\right)^{2}}, x \neq 0$, as a difference of logarithms.
Express all powers as factors.
EXAMPLE
Writing a Logarithmic Expression as a Sum and Difference of Logarithms
Write $\ln \frac{x^{3} \sqrt{x-2}}{(x+1)^{2}}, x>2$, as a sum and difference of logarithms.
Express all powers as factors.

OBJECTIVE 3

Write a Logarithmic Expression as a Single Logarithm

Writing Expressions as a Single Logarithm
Write each of the following as a single logarithm.
(a) $3 \ln 2+\ln \left(x^{2}\right)+2$
(b) $\frac{1}{2} \log _{a} 4-2 \log _{a} 5$
(c) $-2 \log _{a} 3+3 \log _{a} 2-\log _{a}\left(x^{2}+1\right)$

Theorem

Properties of Logarithms
In the following properties, M, N, and a are positive real numbers, with $a \neq 1$.

If $M=N$, then $\log _{a} M=\log _{a} N$.
If $\log _{a} M=\log _{a} N$, then $M=N$.

OBJECTIVE 4

Evaluate Logarithms Whose Base Is Neither 10 nor e

EXAMPLE

Approximating Logarithms Whose Base Is Neither 10 nor e
Approximate $\log _{3} 12$. Round answer to four decimal places.

Theorem

Change-of-Base Formula
If $a \neq 1, h \neq 1$, and M are positive real numbers, then

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

$$
\log _{a} M=\frac{\log M}{\log a} \quad \text { and } \quad \log _{a} M=\frac{\ln M}{\ln a}
$$

EXAMPLE

Approximate: (a) $\log _{5} 89$
(b) $\log _{\sqrt{2}} \sqrt{5}$

Round answers to four decimal places.

OBJECTIVE 5

Graph Logarithmic Functions Whose Base Is Neither 10 nor e

EXAMPLE

Graphing a Logarithmic Function Whose Base Is Neither 10 nor e

Use a graphing utility to graph $y=\log _{2} x$.

Summary

Properties of Logarithms
In the list that follows, $a>0, a \neq 1$, and $b>0, b \neq 1$; also, $M>0$ and $N>0$.

Definition

Properties of logarithms

$$
y=\log _{a} x \text { means } x=a^{y}
$$

$$
\log _{a} 1=0 ; \quad \log _{a} a=1
$$

$$
a^{\log _{a} M}=M ; \quad \log _{a} a^{r}=r
$$

$$
\log _{a}(M N)=\log _{a} M+\log _{a} N
$$

$$
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N
$$

$$
\log _{a} M^{r}=r \log _{a} M
$$

$$
\text { If } M=N, \text { then } \log _{a} M=\log _{a} N
$$

$$
\text { If } \log _{a} M=\log _{a} N \text {, then } M=N .
$$

Change-of-Base Formula
$\log _{a} M=\frac{\log _{b} M}{\log _{b} a}$

