Section 4.5 Properties of Logarithms

Work with the Properties of Logarithms

Establishing Properties of Logarithms

(a) Show that $\log_a 1 = 0$.

(b) Show that $\log_a a = 1$.

 $\log_a 1 = 0 \qquad \log_a a = 1$

Properties of Logarithms

In the properties given next, M and a are positive real numbers, with $a \ne 1$, and r is any real number. The number $\log_a M$ is the exponent to which a must be raised to obtain M.

$$a^{\log_a M} = M$$

The logarithm to the base *a* of *a* raised to a power equals that power.

$$\log_a a^r = r$$

Using Properties (1) and (2)

(a)
$$2^{\log_2 \pi} = \pi$$

(a)
$$2^{\log_2 \pi} = \pi$$
 (b) $\log_{0.2} 0.2^{-\sqrt{2}} = -\sqrt{2}$ (c) $\ln e^{kt} = kt$

(c)
$$\ln e^{kt} = kt$$

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, with $a \ne 1$, and r is any real number.

The Log of a Product Equals the Sum of the Logs

$$\log_a(MN) = \log_a M + \log_a N \tag{3}$$

The Log of a Quotient Equals the Difference of the Logs

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N \tag{4}$$

The Log of a Power Equals the Product of the Power and the Log

$$\log_a M^r = r \log_a M \tag{5}$$

Write a Logarithmic Expression as a Sum or Difference of Logarithms

Writing a Logarithmic Expression as a Sum of Logarithms

Write $\log_2(x^2\sqrt[3]{x-1})$, x>1, as a sum of logarithms.

Express all powers as factors.

EXAMPLE

Writing a Logarithmic Expression as a Difference of Logarithms

Write $\log_6 \frac{x^4}{\left(x^2+3\right)^2}$, $x \neq 0$, as a difference of logarithms.

Express all powers as factors.

Writing a Logarithmic Expression as a Sum and Difference of Logarithms

Write $\ln \frac{x^3 \sqrt{x-2}}{\left(x+1\right)^2}$, x > 2, as a sum and difference of logarithms.

Express all powers as factors.

Write a Logarithmic Expression as a Single Logarithm

Writing Expressions as a Single Logarithm

Write each of the following as a single logarithm.

$$(a) 3 \ln 2 + \ln (x^2) + 2$$

$$(b)\frac{1}{2}\log_a 4 - 2\log_a 5$$

$$(c)-2\log_a 3+3\log_a 2-\log_a (x^2+1)$$

Theorem

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, with $a \neq 1$.

If M = N, then $\log_a M = \log_a N$.

If $\log_a M = \log_a N$, then M = N.

4

Evaluate Logarithms Whose Base Is Neither 10 nor e

Approximating Logarithms Whose Base Is Neither 10 nor e

Approximate $\log_3 12$. Round answer to four decimal places.

Theorem

Change-of-Base Formula

If $a \neq 1$, $b \neq 1$, and M are positive real numbers, then

$$\log_a M = \frac{\log_b M}{\log_b a}$$

$$\log_a M = \frac{\log M}{\log a}$$
 and $\log_a M = \frac{\ln M}{\ln a}$

Approximate: (a) $\log_5 89$ (b) $\log_{\sqrt{2}} \sqrt{5}$ Round answers to four decimal places.

Graph Logarithmic Functions Whose Base Is Neither 10 nor e

Graphing a Logarithmic Function Whose Base Is Neither 10 nor e

Use a graphing utility to graph $y = \log_2 x$.

Summary

Properties of Logarithms

In the list that follows, a > 0, $a \ne 1$, and b > 0, $b \ne 1$; also, M > 0 and N > 0.

Definition

Properties of logarithms

$$y = \log_a x \text{ means } x = a^y$$

 $\log_a 1 = 0; \quad \log_a a = 1$ $a^{\log_a M} = M; \quad \log_a a^r = r$

 $\log_a(MN) = \log_a M + \log_a N$

 $\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$

 $\log_a M^r = r \log_a M$

If M = N, then $\log_a M = \log_a N$.

If $\log_a M = \log_a N$, then M = N.

Change-of-Base Formula
$$\log_a M = \frac{\log_b M}{\log_b a}$$