Section 4.6 Logarithmic and Exponential Equations

Solve Logarithmic Equations Using the Properties of Logarithms

Solving a Logarithmic Equation

Solve:
$$\log_3 4 = 2\log_3 x$$

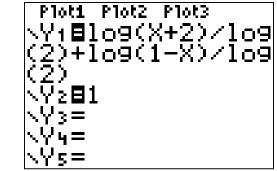
Algebraic Solution

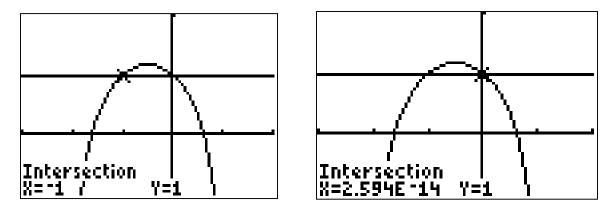
Graphing Solution

 $\log_a M^r = r \log_a M$

If
$$\log_a M = \log_a N$$
, then $M = N$.

Reminder: Logarithms of negative numbers are not defined so check for extraneous solutions.

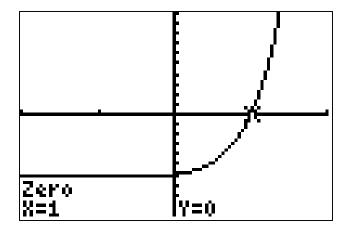

Solving a Logarithmic Equation


Solve:
$$\log_2(x+2) + \log_2(1-x) = 1$$

Algebraic Solution

$$\log_a(MN) = \log_a M + \log_a N$$

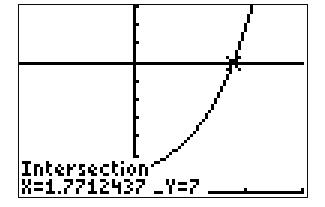
$$y = \log_a x$$
 if and only if $x = a^y$



Solving an Exponential Equation Solve: $9^x - 3^x - 6 = 0$

Algebraic Solution

Hint: If you replace 9^x with $(3^x)^2$ then the equation is quadratic in form.

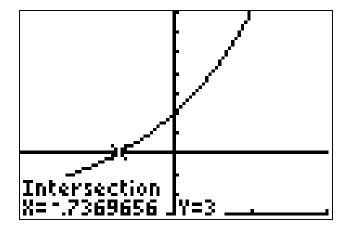


Solving an Exponential Equation Solve: $3^x = 7$

Algebraic Solution

If
$$M = N$$
, then $\log_a M = \log_a N$.

$$\log_a M^r = r \log_a M$$

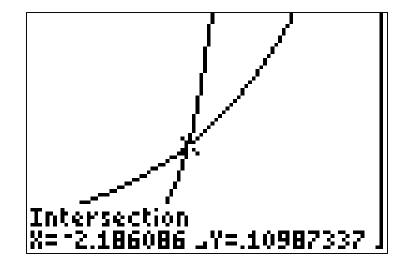


Solving an Exponential Equation Solve: $5 \cdot 2^x = 3$

Algebraic Solution

If
$$M = N$$
, then $\log_a M = \log_a N$.

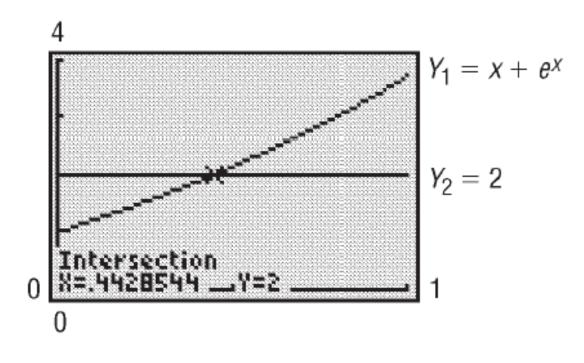
$$\log_a M^r = r \log_a M$$



Solving an Exponential EquationSolve: $2^{x-1} = 5^{2x+3}$ Algebraic SolutionGraphing Solution

If
$$M = N$$
, then $\log_a M = \log_a N$.

$$\log_a M^r = r \log_a M$$



3 Solve Logarithmic and Exponential Equations Using a Graphing Utility

Solving Equations Using a Graphing Utility

Solve: $x + e^x = 2$ Express the solution(s) rounded to two decimal places.

