Section 4.7 Compound Interest

Determine the Future Value of a Lump Sum of Money

Simple Interest Formula

If a principal of *P* dollars is borrowed for a period of *t* years at a per annum interest rate *r*, expressed as a decimal, the interest *I* charged is

$$I = Prt$$

Interest charged according to formula (1) is called **simple interest**.

Annually: Once per year

Semiannually: Twice per year

Quarterly: Four times per year

Monthly: 12 times per year

Daily: 365 times per year

EXAMPLE Computing Compound Interest

A credit union pays interest of 4% per annum compounded quarterly on a certain savings plan. If \$2000 is deposited in such a plan and the interest is left to accumulate, how much is in the account after 1 year?

$$I = Prt$$

principal

I = Prt The new principal is P + I

The amount A after one compounding period is

$$A = P + I = P + P \cdot \left(\frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right)$$

After two compounding periods,

new principal

$$A = P \cdot \left(1 + \frac{r}{n}\right) + P \cdot \left(1 + \frac{r}{n}\right) \left(\frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right) \left(1 + \frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right)^2$$
New
Interest on

Theorem

Compound Interest Formula

The amount A after t years due to a principal P invested at an annual interest rate r compounded n times per year is

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$

Comparing Investments Using Different Compounding Periods

Investing \$1000 at an annual rate of 10% compounded annually, semiannually, quarterly, monthly, and daily will yield the following amounts after 1 year:

Annual compounding
$$(n = 1)$$
: $A = P \cdot (1 + r)$
= $(\$1000)(1 + 0.10) = \1100.00

Semiannual compounding
$$(n = 2)$$
: $A = P \cdot \left(1 + \frac{r}{2}\right)^2$
= $(\$1000)(1 + 0.05)^2 = \1102.50

Quarterly compounding
$$(n = 4)$$
: $A = P \cdot \left(1 + \frac{r}{4}\right)^4$
= $(\$1000)(1 + 0.025)^4 = \1103.81

Monthly compounding
$$(n = 12)$$
: $A = P \cdot \left(1 + \frac{r}{12}\right)^{12}$
= $(\$1000)(1 + 0.00833)^{12} = \1104.71

Daily compounding
$$(n = 365)$$
: $A = P \cdot \left(1 + \frac{r}{365}\right)^{365}$
= $(\$1000)(1 + 0.000274)^{365} = \1105.16

$$A = P \cdot \left(1 + \frac{r}{n}\right)^n = P \cdot \left(1 + \frac{1}{\frac{n}{r}}\right)^n = P \cdot \left[\left(1 + \frac{1}{\frac{n}{r}}\right)^{n/r}\right]^r = P \cdot \left[\left(1 + \frac{1}{h}\right)^h\right]^r$$

$$h = \frac{n}{r}$$

$\left(1+\frac{r}{n}\right)^n$				
	n = 100	n = 1000	n = 10,000	e ^r
r = 0.05	1.0512580	1.0512698	1.051271	1.0512711
r = 0.10	1.1051157	1.1051654	1.1051704	1.1051709
r = 0.15	1.1617037	1.1618212	1.1618329	1.1618342
r = 1	2.7048138	2.7169239	2.7181459	2.7182818

Theorem

Continuous Compounding

The amount Λ after ι years due to a principal P invested at an annual interest rate r compounded continuously is

$$A = Pe^{rt}$$

Using Continuous Compounding

Find the amount A that results from investing a principal P of \$2000 at an annual rate r of 8% compounded continuously for a time t of 1 year.

$$A = Pe^{rt}$$

Calculate Effective Rates of Return

The **effective rate** of interest is the equivalent annual simple rate of interest that would yield the same amount as compounding after 1 year.

	Annual Rate	Effective Rate
Annual compounding	10%	10%
Semiannual compounding	10%	10.25%
Quarterly compounding	10%	10.381%
Monthly compounding	10%	10.471%
Daily compounding	10%	10.516%
Continuous compounding	10%	10.517%

Computing the Effective Rate of Interest

On January 2, 2004, \$2000 is placed in an Individual Retirement Account (IRA) that will pay interest of 7% per annum compounded continuously.

- (a) What will the IRA be worth on January 1, 2024?
- (b) What is the effective rate of interest?

-- Exploration ----

For the IRA described in Example 4, how long will it be until A = \$4000?

[**Hint:** Graph $Y_1 = 2000e^{0.07x}$ and $Y_2 = 4000$. Use INTERSECT to find x.]

3 Determine the Present Value of a Lump Sum of Money

Theorem

Present Value Formulas

The present value P of Λ dollars to be received after t years, assuming a per annum interest rate r compounded n times per year, is

$$P = A \cdot \left(1 + \frac{r}{n}\right)^{-nt}$$

If the interest is compounded continuously, then

$$P = Ae^{-rt}$$

Computing the Value of a Zero-Coupon Bond

A zero-coupon (noninterest-bearing) bond can be redeemed in 10 years for \$1000. How much should you be willing to pay for it now if you want a return of

- (a) 7% compounded monthly?
- (b) 6% compounded continuously?

$$P = A \cdot \left(1 + \frac{r}{n}\right)^{-nt}$$

$$P = Ae^{-rt}$$

Rate of Interest Required to Double an Investment

What annual rate of interest compounded quarterly should you seek if you want to double your investment in 6 years?

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$

Determine the Time Required to Double or Triple a Lump Sum of Money

Doubling and Tripling Time for an Investment

- (a)How long will it take for an investment to double in value if it earns 6% compounded continuously?
- (b) How long will it take to triple at this rate?

