Section 4.7

Compound Interest

OBJECTIVE 1

Determine the Future Value of a Lump Sum of Money

Simple Interest Formula

If a principal of P dollars is borrowed for a period of t years at a per annum interest rate r, expressed as a decimal, the interest I charged is

$$
I=P r t
$$

Interest charged according to formula (1) is called simple interest.

Annually: Semiannually:
Quarterly: Monthly: Daily:

Once per year
Twice per year
Four times per year
12 times per year
365 times per year

EXAMPLE Computing Compound Interest

A credit union pays interest of 4% per annum compounded quarterly on a certain savings plan. If $\$ 2000$ is deposited in such a plan and the interest is left to accumulate, how much is in the account after 1 year?

$$
I=P r t \quad \text { The new principal is } P+I
$$

The amount A after one compounding period is

$$
A=P+I=P+P \cdot\left(\frac{r}{n}\right)=P \cdot\left(1+\frac{r}{n}\right)
$$

After two compounding periods,
$A=P \cdot\left(1+\frac{r}{n}\right)+P \cdot\left(1+\frac{r}{n}\right)\left(\frac{r}{n}\right)=P \cdot\left(1+\frac{r}{n}\right)\left(1+\frac{r}{n}\right)=P \cdot\left(1+\frac{r}{n}\right)^{2}$

Theorem

Compound Interest Formula

The amount A after $/$ years due to a principal P invested at an annual interest rate r compounded n times per year is

$$
A=P \cdot\left(1+\frac{r}{n}\right)^{n t}
$$

EXAMPLE

Comparing Investments Using Different Compounding Periods Investing $\$ 1000$ at an annual rate of 10% compounded annually, semiannually, quarterly, monthly, and daily will yield the following amounts after 1 year:

Annual compounding $(n=1): \quad A=P \cdot(1+r)$

$$
=(\$ 1000)(1+0.10)=\$ 1100.00
$$

Semiannual compounding $(n=2): \quad A=P \cdot\left(1+\frac{r}{2}\right)^{2}$

$$
=(\$ 1000)(1+0.05)^{2}=\$ 1102.50
$$

Quarterly compounding $(n=4): \quad A=P \cdot\left(1+\frac{r}{4}\right)^{4}$

$$
=(\$ 1000)(1+0.025)^{4}=\$ 1103.81
$$

Monthly compounding $(n=12): \quad A=P \cdot\left(1+\frac{r}{12}\right)^{12}$

$$
=(\$ 1000)(1+0.00833)^{12}=\$ 1104.71
$$

Daily compounding $(n=365)$: $\quad A=P \cdot\left(1+\frac{r}{365}\right)^{365}$

$$
=(\$ 1000)(1+0.000274)^{365}=\$ 1105.16
$$

$$
A=P \cdot\left(1+\frac{r}{n}\right)^{n}=P \cdot\left(1+\frac{1}{\frac{n}{r}}\right)^{n}=P \cdot\left[\left(1+\frac{1}{\frac{n}{r}}\right)^{n / r}\right]_{\substack{h=\frac{n}{r}}}^{r} P \cdot\left[\left(1+\frac{1}{h}\right)^{h}\right]^{r}
$$

$$
\left(1+\frac{r}{n}\right)^{n}
$$

	$\boldsymbol{n}=\mathbf{1 0 0}$	$\boldsymbol{n}=\mathbf{1 0 0 0}$	$\boldsymbol{n}=\mathbf{1 0 , 0 0 0}$	\mathbf{e}^{r}
$r=0.05$	1.0512580	1.0512698	1.051271	1.0512711
$r=0.10$	1.1051157	1.1051654	1.1051704	1.1051709
$r=0.15$	1.1617037	1.1618212	1.1618329	1.1618342
$r=1$	2.7048138	2.7169239	2.7181459	2.7182818

Theorem

Continuous Compounding

The amount Λ after t years due to a principal l invested at an annual interest rate r compounded continuously is

$$
A=P e^{r t}
$$

Using Continuous Compounding

Find the amount A that results from investing a principal P of $\$ 2000$ at an annual rate r of 8% compounded continuously for a time t of 1 year.

$$
A=P e^{r t}
$$

OBJECTIVE 2

2
Calculate Effective Rates of Return

The effective rate of interest is the equivalent annual simple rate of interest that would yield the same amount as compounding after 1 year.

	Annual Rate	Effective Rate
Annual compounding	10%	10%
Semiannual compounding	10%	10.25%
Quarterly compounding	10%	10.381%
Monthly compounding	10%	10.471%
Daily compounding	10%	10.516%
Continuous compounding	10%	10.517%

EXAMPLE

Computing the Effective Rate of Interest

On January $2,2004, \$ 2000$ is placed in an Individual Retirement Account (IRA) that will pay interest of 7% per annum compounded continuously.
(a) What will the IRA be worth on January 1, 2024?
(b) What is the effective rate of interest?

- Exploration

For the IRA described in Example 4, how long will it be until $A=\$ 4000$? $\$ 6000$?
[Hint: Graph $Y_{1}=2000 \mathrm{e}^{0.07 x}$ and $Y_{2}=4000$. Use INTERSECT to find x.]

OBJECTIVE 3

Theorem

Present Value Formulas

The present value P of Λ dollars to
be received after t years, assuming a per
annum interest rate r compounded n times per year, is

$$
P=A \cdot\left(1+\frac{r}{n}\right)^{-n t}
$$

If the interest is compounded continuously, then

$$
P=A e^{-r t}
$$

EXAMPLE

Computing the Value of a Zero-Coupon Bond

A zero-coupon (noninterest-bearing) bond can be redeemed in 10 years for $\$ 1000$. How much should you be willing to pay for it now if you want a return of
(a) 7% compounded monthly?
(b) 6% compounded continuously?

$$
P=A \cdot\left(1+\frac{r}{n}\right)^{-n t}
$$

$$
P=A e^{-r t}
$$

EXAMPLE

Rate of Interest Required to Double an Investment

What annual rate of interest compounded quarterly should you seek if you want to double your investment in 6 years?

$$
A=P \cdot\left(1+\frac{r}{n}\right)^{n t}
$$

OBJECTIVE 4

Determine the Time Required to Double or Triple a Lump

 Sum of Money
EXAMPLE

Doubling and Tripling Time for an Investment

(a)How long will it take for an investment to double in value if it earns 6% compounded continuously?
(b) How long will it take to triple at this rate?

$$
A=P e^{r t}
$$

