Section 5.1 Angles and Their Measure

Counterclockwise rotation Positive angle

Clockwise rotation Negative angle Counterclockwise rotation Positive angle

(a) θ lies in quadrant II

 (a) 1 revolution counterclockwise, 360°

Drawing an Angle

Draw each angle.

(a) 45° (b) -90° (c) 225° (d) 405°

1 Convert between Degrees, Minutes, Seconds, Forms for Angles

1 counterclockwise revolution = 360° $1^{\circ} = 60'$ 1' = 60''

Converting between Degrees, Minutes, Seconds, and Decimal Forms

- (a) Convert $50^{\circ}6'21''$ to a decimal in degrees.
- (b) Convert 21.256° to the $D^{\circ}M'S''$ form.

Graphing Solution

50°6	'21" 50.10583333

21.:	256⊧DMS 21°15'21.6"

Find the Arc Length of a Circle

Theorem

Arc Length

For a circle of radius r, a central angle of θ radians subtends an arc whose length s is

$$s = r\theta$$

Finding the Length of an Arc of a Circle

Find the length of the arc of a circle of radius 4 meters subtended by a central angle of 0.5 radian.

$$s = r\theta$$

3 Convert from Degrees to Radians and from Radians to Degrees

1 degree =
$$\frac{\pi}{180}$$
 radian 1 radian = $\frac{180}{\pi}$ degrees

EXAMPLE Converting from Degrees to Radians

Convert each angle in degrees to radians.

(d) 90° (b) 150° (c) -45° (a) 60° (e) 107°

1 degree =
$$\frac{\pi}{180}$$
 radian 1 radian = $\frac{180}{\pi}$ degrees

EXAMPLE Converting Radians to Degrees

Convert each angle in radians to degrees.

(c) $-\frac{3\pi}{4}$ radians (b) $\frac{3\pi}{2}$ radians (a) $\frac{\pi}{6}$ radian (d) $\frac{7\pi}{3}$ radians (e) 3 radians

Degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
Degrees		210°	225°	240°	270°	300°	315°	330°	360°
Radians		$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π

Finding the Distance between Two Cities

See Figure 15(a). The latitude of a location L is the angle formed by a ray drawn from the center of Earth to the Equator and a ray drawn from the center of Earth to L. See Figure 15(b). Glasgow, Montana, is due north of Albuquerque, New Mexico. Find the distance between Glasgow (48°9′ north latitude) and Albuquerque (35°5′ north latitude). Assume that the radius of Earth is 3960 miles.

Find the Area of a Sector of a Circle

Area of a Sector

formed by a central angle of θ radians is

$$A = \frac{1}{2}r^2\theta$$

Finding the Area of a Sector of a Circle

Find the area of the sector of a circle of radius 5 feet formed by an angle of 40°. Round the answer to two decimal places.

5 Find the Linear Speed of an Object Traveling in Circular Motion

$$\omega = \frac{\theta}{t}$$

$$v = r\omega$$

Finding Linear Speed

A child is spinning a rock at the end of a 2-foot rope at the rate of 180 revolutions per minute (rpm). Find the linear speed of the rock when it is released.

