Section 5.1

Angles and Their Measure

Counterclockwise rotation

Positive angle
Clockwise rotation
Negative angle

Counterclockwise rotation

Positive angle

(a) θ is in standard position; θ is positive

(b) θ is in standard position; θ is negative

(a) θ lies in quadrant II
(b) θ lies in quadrant IV

(c) θ is a quadrantal angle

Terminal side

Initial side

Vertex

(a) 1 revolution
counterclockwise, 360°

Terminal side

Vertex Initial side
(b) right angle, $\frac{1}{4}$ revolution counter-clockwise, 90°

Terminal side Vertex Initial side
(c) straight angle, $\frac{1}{2}$ revolution counter-clockwise, 180°

EXAMPLE

Drawing an Angle

Draw each angle.
(a) 45°
(b) -90°
(c) 225°
(d) 405°

OBJECTIVE 1

Convert between Degrees, Minutes, Seconds, Forms for Angles

1 counterclockwise revolution $=360^{\circ}$

$$
1^{\circ}=60^{\prime} \quad 1^{\prime}=60^{\prime \prime}
$$

EXAMPLE

Converting between Degrees, Minutes, Seconds, and Decimal Forms
(a) Convert $50^{\circ} 6^{\prime} 21^{\prime \prime}$ to a decimal in degrees.
(b) Convert 21.256° to the $\mathrm{D}^{\circ} \mathrm{M}^{\prime} \mathrm{S}^{\prime \prime}$ form.

Graphing Solution

$21.256 \cdot \operatorname{lims} \cdot 21.6$ "

OBJECTIVE 2

2 Find the Arc Length of a Circle

$$
\frac{\theta}{\theta_{1}}=\frac{s}{s_{1}}
$$

Theorem

Arc Length

For a circle of radius r, a central angle of θ radians subtends an arc whose length s is

$$
s=r \theta
$$

EXAMPLE

Finding the Length of an Arc of a Circle

Find the length of the arc of a circle of radius 4 meters subtended by a central angle of 0.5 radian.

$$
s=r \theta
$$

OBJECTIVE 3

3 Convert from Degrees to Radians and from Radians to Degrees

1 revolution $=2 \pi$ radians

$180^{\circ}=\pi$ radians

1 degree $=\frac{\pi}{180}$ radian $\quad 1$ radian $=\frac{180}{\pi}$ degrees

EXAMPLE Converting from Degrees to Radians

Convert each angle in degrees to radians.
(a) 60°
(b) 150°
(c) -45°
(d) 90°
(e) 107°

$$
1 \text { degree }=\frac{\pi}{180} \text { radian } \quad 1 \text { radian }=\frac{180}{\pi} \text { degrees }
$$

EXAMPLE Converting Radians to Degrees

Convert each angle in radians to degrees.
(a) $\frac{\pi}{6}$ radian
(b) $\frac{3 \pi}{2}$ radians
(c) $-\frac{3 \pi}{4}$ radians
(d) $\frac{7 \pi}{3}$ radians
(e) 3 radians

Degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
Degrees		210°	225°	240°	270°	300°	315°	330°	360°
Radians		$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	2π

EXAMPLE

Finding the Distance between Two Cities

See Figure 15(a). The latitude of a location L is the angle formed by a ray drawn from the center of Earth to the Equator and a ray drawn from the center of Earth to L. See Figure 15(b). Glasgow, Montana, is due north of Albuquerque, New Mexico. Find the distance between Glasgow ($48^{\circ} 9^{\prime}$ north latitude) and Albuquerque ($35^{\circ} 5^{\prime}$ north latitude). Assume that the radius of Earth is 3960 miles.

(a)

(b)

OBJECTIVE 4

Find the Area of a Sector of a Circle

Area of a Sector

The area A of the sector of a circle of radius r formed by a central angle of θ radians is

$$
A=\frac{1}{2} r^{2} \theta
$$

EXAMPLE

Finding the Area of a Sector of a Circle

Find the area of the sector of a circle of radius 5 feet formed by an angle of 40°. Round the answer to two decimal places.

$$
A=\frac{1}{2} r^{2} \theta
$$

OBJECTIVE 5

Find the Linear Speed of an Object Traveling in Circular Motion

$v=r \omega$

Finding Linear Speed

A child is spinning a rock at the end of a 2 -foot rope at the rate of 180 revolutions per minute (rpm). Find the linear speed of the rock when it is released.

