\therefore Professor Katiraie
\qquad Solution

Solve the equation on the interval $0 \leq \theta<2 \pi$.

1) $\sqrt{2} \cos (2 \theta)=1$

$$
\begin{aligned}
& \cos 2 \theta=\frac{1}{\sqrt{2}} \Rightarrow \cos 2 \theta=\frac{\sqrt{2}}{2} \\
& 2 \theta=\frac{\pi}{4}+2 n \pi \quad 2 \theta=\frac{7 \pi}{4}+2 n \pi \\
& \text { 2) } \sin (4 \theta)=\frac{\sqrt{3}}{2} \\
& \theta=\frac{\pi}{8}+n \pi \quad \theta=\frac{7 \pi}{8}+n \pi \\
& \left.4 \theta=\frac{\pi}{3}+2 n \pi \Rightarrow \theta=\frac{\pi}{12}+\frac{n \pi}{2} \theta=\frac{9 \pi}{8}, \frac{\pi}{8}\right) \theta=\frac{7 \pi}{8}, \frac{15 \pi}{8} \\
& 4 \theta=\frac{2 \pi}{3}+2 n \pi \Rightarrow \theta=\frac{\pi}{6}+\frac{n \pi}{2} \\
& \text { 3) } \cot \left(2 \theta-\frac{\pi}{2}\right)=1 \\
& 2 \theta-\frac{\pi}{2}=\frac{\pi}{4} \Rightarrow 2 \theta=\frac{3 \pi}{4}+k \pi \Rightarrow \theta=\frac{3 \pi}{8}+\frac{k \pi}{2} \\
& 2 \theta-\frac{\pi}{2}=\frac{5 \pi}{4} \Rightarrow 2 \theta=\frac{7 \pi}{4}+k \pi \Rightarrow \theta=\frac{7 \pi}{8}+\frac{k \pi}{2} \\
& \text { Solve the equation. Give a general formula for all the solutions. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4) } \csc \frac{\theta}{3}=\frac{2 \sqrt{3}}{3} \quad \sin \theta=\frac{3}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{6}=\frac{\sqrt{3}}{2} \quad \sin \frac{\theta}{3}=\frac{\sqrt{3}}{2} \\
& \frac{\theta}{3}=\frac{\pi}{3}+2 n \pi \Rightarrow \theta=\pi+6 n \pi \\
& \frac{\theta}{3}=\frac{2 \pi}{3}+2 n \pi \Rightarrow \theta=2 \pi+6 n \pi
\end{aligned}
$$

Solve the equation on the interval $0 \leq \theta<2 \pi$.
5) $\cos ^{2} \theta+2 \cos \theta+1=0$

$$
\begin{gathered}
(\cos \theta+1)(\cos \theta+i)=0 \\
\cos \theta=-1 \quad \theta=\pi
\end{gathered}
$$

6) $2 \sin ^{2} \theta=\sin \theta$

$$
\begin{aligned}
& 2 \sin ^{2} \theta-\sin \theta=0 \\
& \sin \theta(2 \sin \theta-1)=0 \\
& \sin \theta=0 \quad 2 \sin \theta=+1 \\
& \theta=0, \pi \quad
\end{aligned} \quad \begin{aligned}
& \sin \theta=\frac{1}{2}
\end{aligned}
$$

solutions $\left(0, \pi, \frac{\pi}{6}, \frac{5 \pi}{6}\right)$

$$
\theta=0, \pi \quad \sin \theta=\frac{1}{2} \quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

Solve the problem.
7) A building 180 feet tall casts a 70 foot long shadow. If a person looks down from the top of the building, what is the measure of the angle between the end of the shadow and the vertical side of the building (to the nearest degree)? (Assume the person's eyes are level with the top of the building.)

9) Two surveyors 180 meters apart on the same side of a river measure their respective angles to a point between them on the other side of the river and obtain 54° and 68°. How far from the point (line-of-sight distance) is each surveyor? Round your answer to the nearest 0.1 meter.

$$
\begin{aligned}
& \frac{\sin 58}{180}=\frac{\sin 54}{b} \Rightarrow b=171.71 \text { meters } \\
& \frac{\sin 68}{a}=\frac{\sin 58}{180} \Rightarrow a=196.7 \text { meten }
\end{aligned}
$$

10) A surveyor is measuring the distance across a small lake. He has set up his transit on one side of the lake 130 feet from a piling that is directly across from a pier on the other side of the lake. From his transit, the angle between Per the piling and the pier is 70°. What is the distance between the piling and the pier to the nearest foot?

$$
\begin{aligned}
& \tan 70^{\circ}=\frac{h}{130} \\
& h=130 \tan 70^{\circ}=357.17 \text { feet }
\end{aligned}
$$

