Math 165 - Reviewing chapters 1 and 2
Name \qquad
ALSO, review problems from the class' handouts.
Solve the problem.

1) City B is located at 100 miles east and 50 miles north of cityA. City C is located at 75 miles west and 150 miles south of city A. Find the distance between city B and city C. You can choose city A as the origin of the rectangular coordinate system. Write your answer rounded to two decimal places, if necessary.

Use algebra to find the intercepts to two decimal places.
2) $4 x^{2}-5 y=68$

Using a graphing utility, to find the intercepts. Approixmate your answers rounded to three decimal places.
3) Find the x - and y-intercepts of $y=x^{3}-3 x^{2}-45 x-16$.

Write the standard form of the equation for the circle.
4) Give the equation for a circle.

Center at $(2,-4)$, radius $\sqrt{2}$

Find the center (h, k) and radius r of the circle. Graph the circle.
5) Find the center, radius, and graph of $x^{2}+y^{2}-4 x+8 y+11=0$.

Find the general form of the equation for the circle with the given properties.
6) With endpoints of a diameter at $(5,9)$ and $(-1,3)$.

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places.

$$
\text { 7) }-x^{4}+3 x^{3}+\frac{4}{3} x^{2}=\frac{9}{2} x+2
$$

Evaluate the function. Express the answer in simplified form.
8) $f(x)=3 x^{2}-5 x+2$. Evaluate $\frac{f(x+h)-f(x)}{h}$, where $h \neq 0$

Determine whether the equation defines y as a function of x.
9) $x^{2}-4 y^{2}=1$

Find the domain of the function.
10) $g(x)=\frac{3 x}{x^{2}-16}$
11) $f(x)=\sqrt{2-x}$

Give the domain of the function.
12) $f(x)=\frac{\sqrt{x+7}}{(x+5)(x+7)}$

For the given functions f and g, find the requested function and state its domain.
13) $f(x)=6 x-2 ; g(x)=2 x-4$

Find $(f-g)(x)$.

Solve the problem.
14) Find $\left(\frac{f}{g}\right)(-4)$ when $f(x)=2 x-5$ and $g(x)=5 x^{2}+14 x+2$.

Determine algebraically whether the function is even, odd, or neither.
15) $f(x)=\frac{x}{x^{2}+3}$

Find the average rate of change for the function between the given values. Write the equation of the secant line containing ($1, f(1)$) and ($5, f(5)$)
16) $f(x)=\sqrt{2 x-1}$; from 1 to 5

Using a graphing utility, determine where the function is increasing and decreasing. Round answers to 3 decimal places. Give any local or absolute extrema points.
17) $f(x)=4 x^{3}-5 x^{2}-7 x+3$

Solve the problem.
18) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 600 feet. After 35 minutes the bell is at a depth of 1900 feet. What is the average rate of lowering per minute? Round to the nearest hundredth if necessary.

Graph the function.

19) $f(x)= \begin{cases}-x+2 & \text { if } x<0 \\ \sqrt{x}+3 & \text { if } x \geq 0\end{cases}$

Solve the problem.
20) Evaluate the expression $3 f(-2)+4 f(2)+5 f(0)$, given $f(x)=\left\{\begin{aligned} 2 x-3 & \text { if } x<0 \\ x+1 & \text { if } x \geq 0\end{aligned}\right.$.

Write the function for the following graph.
21)

Solve the problem.

22) One Internet service provider has the following rate schedule for high- speed Internet service:

Monthly service charge	$\$ 18.00$
1st 50 hours of use	free
Next 50 hours of use	$\$ 0.25$ hour
Over 100 hours of use	$\$ 1.00$ hour

What is the charge for 50 hours of high- speed Internet use in one month? What is the charge for 75 hours of high- speed Internet use in one month?
What is the charge for 135 hours of high- speed Internet use in one month?

Using transformations, sketch the graph of the function.

23) The graph of $y=f(x)$ is as shown. Sketch the graph of $y=f(x+2)-1$

Solve the problem.

24) Let $P(x, y)$ be a point on the graph of $y=x^{2}-6$. Express the distance D from P to the fixed point $F((0,1)$.
25) A right triangle has one vertex on the graph of $y=x^{2}$ at (x, y), another at the origin, and the third on the (positive) y-axis. Express the area A of the triangle as a function of x.
26) A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 14 inches by 29 inches by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume V of the box as a function of x.

Answer Key

Testname: CHAP1-2.REV-SUMMER2017

1) 265.75 miles
2) $(0,-13.60),(4.12,0),(-4.12,0)$
3) $(-5.144,0),(-0.366,0),(8.509,0),(0,-16)$
4) $(x-2)^{2}+(y+4)^{2}=2$
5) center $(2,-4) ; r=3$

6) $x^{2}+y^{2}-4 x-12 y+22=0$
7) $\{2.82,1.61,-0.46,-0.97\}$
8) $6 x+3 h-5$
9) not a function
10) $\{x \mid x \neq-4,4\}$
11) $\{x \mid x \leq 2\}$
12) $x \geq-7, x \neq-5, x \neq-7$
13) $(f-g)(x)=4 x+2$; all real numbers
14) $-\frac{1}{2}$
15) odd
16) $\frac{1}{2}$
17) the graph is increasing on $(-\infty,-0.453)$ and $(1.287, \infty)$; decreasing on $(-0.453,1.287)$. Local maximum $(-0.453,4.773)$, local minimum ($1.287,-5.764$)
18) 48.15 ft per min
19)

20) -4

Answer Key
Testname: CHAP1-2.REV-SUMMER2017
21) $f(x)= \begin{cases}4 & \text { if }-5 \leq x<-2 \\ |x| & \text { if }-2 \leq x<4 \\ \sqrt{x} & \text { if } 4 \leq x \leq 12\end{cases}$
22) $\$ 18.00 ; \$ 24.25 ; \$ 65.50$
23)

24) $d=\operatorname{sqrt}\left(x^{\wedge} 2+\left(x^{\wedge} 2-7\right)^{\wedge} 2\right)$
25) $A(x)=\frac{1}{2} x^{3}$
26) $V(x)=x(14-2 x)(29-2 x)$

