If the following defines a one-to-one function, find the inverse.

1) {(-13, 18), (15, 18), (-4, -12)}

Decide whether or not the functions are inverses of each other.

2) $f(x) = 4x + 7; g(x) = \frac{x}{4} - 7$

Determine the inverse of the given function.

3) $\{(-3, 4), (-1, 5), (0, 2), (2, 4), (5, 7)\}$

The graph of a one-to-one function f is given. Draw the graph of the inverse function f⁻¹ as a dashed line or curve.

Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.

5)

The function f is one-to-one. Find its inverse.

6) $f(x) = 3x^2 + 2; x \le 0$

7) Determine the equation for the inverse function of $y = (x + 2)^3 - 8$.

Solve the problem.

8) The profit *P* for selling *x* items is given by the equation P(x) = 2x - 500. Express the sales amount *x* as a function of the profit *P*.

Approximate each value using a calculator. Express answer rounded to three decimal places.

9) 4.4^π

Solve the problem.

- 10) A rumor that there will be an open book test on chapter 4 has spread in our class of 28 students. The
 - mathematical model for the situation is $N = 28(1 e^{-0.16d})$ where *N* is the number of students who have heard the rumor and *d* is the number of hours that have elapsed since the rumor began.
 - a) How many students will have heard the rumor after 5 hours?
 - b) 21 students have heard the rumor. How many hours ago did the rumor began?

Graph the function.

11) Graph the function $f(x) = 2^{x-1} - 1$

Answer the question.

12) Define the number e.

A) The number approximately equal to 2.72. B) The number defined by $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ in Calculus. C) The number that the expression, $\left(1 + \frac{1}{n}\right)^n$, approaches as $n \to \infty$.

D) All of the above.

Solve the equation.

13)
$$9^{2x} \cdot 27(3-x) = \frac{1}{9}$$

14) $2(x^2 - 3) = 64$

Use a graphing calculator to solve the equation. Round your answer to two decimal places.

15) $e^{x} - \ln x = 4$

Solve the given exponential equation. Round answer to three decimal places.

16) $5^{2x} + 5^{(x+1)} - 24 = 0$

Change exponential expressions to logarithmic expression

17) $2.3^{x+5} = 15$

Convert to logarithmic form.

18) $e^{X} = 15$

Convert to exponential form.

19)
$$\log_5 \frac{1}{25} = -2$$

Change logarithmic expression to exponential expression.

20) $\log_b 49 = \frac{2}{3}$

Find the value of the expression.

21) $\log_9 \frac{1}{81}$

22) ln l

Solve the problem.

- 23) The number of men dying of AIDS (in thousands) since 1987 is modeled by $y = 17.3 + 10.06(\ln x)$, where x represents the number of years after 1987. Use this model to predict the number of AIDS deaths among men in 1994. Express answer rounded to the nearest hundred men.
- 24) Use the function from the previous problem to find its inverse.

Find the domain of the function.

- 25) $f(x) = \log_{10} (x^2 17x + 72)$
- 26) Determine the domain of the function $f(x) = \log_{1/2}(x + 4)$.

Sketch the graph using the transformation concept. Then sketch the graph using the calculator.

The graph of a logarithmic function is shown. Select the function which matches the graph.

27) Think on the transformations that took place.

	•	•	•	•	•	5	-y	•	•	•	•	•
	•	•	•	•	•	4-	-	•	•	•	•	•
	•	•	•	•	•	3-	-	•	•	•	•	•
	•	•	•	•	•	2-	-	•	•	•	•	•
	•	•	•	•	•	1	_	•	•	•	•	•
¢	+ -5	+ ~4→	+ -3	-2	-1	<u> </u>	_	1	1 2	3	4	+ → 5 ×
	•	•	•	•	•	-2-	_	•	•	•	•	
	•	•	•	•	•	-3-	_	•	•	•	•	•
	•	•	•	•	•	-4 -	-	•	•	•	•	•
	•	•	•	•	•	-5	_	•	•	•	•	•
	A)	y =	- 1	og (–>	()	•			B) y =	= log (x)

C) $y = -\log(x)$

D) $y = \log(-x)$

Solve the problem.

28)	log	8	_ 2
20)	^{log} x	27	- 5

29) $\log_4 16 = x$

30) The Richter scale converts seismographic readings into numbers for measuring the magnitude of an earthquake according to this function

 $M(x) = \log (\frac{x}{x_0})$, where $x_0 = 10^{-3}$.

What would be the readings x (to the nearest tenth) for magnitudes of 4.9 and 7.9?

- 31) The formula $D = 6e^{-0.04h}$ can be used to find the number of milligrams D of a certain drug in a patient's bloodstream h hours after the drug has been given. When the number of milligrams reaches 4, the drug is to be given again. What is the time between injections?
- 32) $pH = -log_{10}[H^+]$ Find the $[H^+]$ if the pH = 2.4.
- 33) $pH = -\log_{10}[H^+]$ Find the pH if the $[H^+] = 5.7 \times 10^{-13}$.

Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.

34) log 7 7¹⁰

35) $\log_4 24 - \log_4 6$

Using the properties of logarithms, evaluate the expression.

36) 2 ln e^{4.2}

Write as the sum and/or difference of logs. Do not use exponents.

$$37) \log_{19} \frac{18\sqrt{r}}{s}$$

Express as a single logarithm.

38) $(\log_{a} m - \log_{a} n) + 3 \log_{a} k$

Write expressions as a single logarithm.

$$39) \frac{3}{4} \ln 16 - \ln(4^2 - 3^2 - 2)$$

Use the Change-of-Base Formula and a calculator to evaluate the logarithm. Round your answer to two decimal places.

40) Evaluate $\log_{(2/3)}$ 19.

Graph the function using a graphing utility and the Change-of-Base Formula.

41) $y = \log_3(x - 3)$ Think on what transformation took place. Does it agree with the graph? Find x- and y-intercepts. Write the equation of the asymptote.

Solve the equation.

42)
$$\log 4x = \log 2 + \log (x - 1)$$

43) $\log (3 + x) - \log (x - 4) = \log 2$

Solve the given logarithmic equation.

- 44) $\log_2(3x 2) \log_2(x 5) = 4$
- 45) $2 + \log_3(2x + 5) \log_3 x = 4$

Solve the given exponential equation.

46)
$$3 \cdot 5^{2t-1} = 75$$

Solve the equation. If necessary, round your answer to two decimal places.

47)
$$\left(\frac{1}{4}\right)^{X} = 14$$

Use a graphing calculator to solve the equation. Round your answer to two decimal places.

48)
$$\log_5 x + \log_2 x = 3$$

Solve the problem.

- 49) The size P of a small herbivore population at time t (in years) obeys the function $P(t) = 500e^{0.17t}$ if they have enough food and the predator population stays constant. After how many years will the population reach 1500?
- 50) A culture of bacteria obeys the law of uninhibited growth. If 140,000 bacteria are present initially and there are 609,000 after 6 hours, how long will it take for the population to reach one million?
- 51) The half-life of silicon-32 is 710 years. If 40 grams is present now, how much will be present in 200 years? (Round your answer to three decimal places.)
- 52) A fossilized leaf contains 14% of its normal amount of carbon 14. How old is the fossil (to the nearest year)? Use 5600 years as the half-life of carbon 14.

- 53) Strontium 90 decays at a constant rate of 2.44% per year. Therefore, the equation for the amount P of strontium 90 after t years is $P = P_0 e^{-0.0244t}$. How long will it take for 15 grams of strontium to decay to 5 grams? Round answer to 2 decimal places.
- 54) The amount of a certain drug in the bloodstream is modeled by the function $y = y_0 e^{-0.40t}$, where y_0 is the amount of the drug injected (in milligrams) and t is the elapsed time (in hours). Suppose that 10 milligrams are injected at 10:00 A.M. If a second injection is to be administered when there is 1 milligram of the drug present in the bloodstream, approximately when should the next dose be given? Express your answer to the nearest quarter hour.
- 55) A thermometer reading 79°F is placed inside a cold storage room with a constant temperature of 35°F. If the thermometer reads 74°F in 13 minutes, how long before it reaches 57°F? Assume the cooling follows Newton's Law of Cooling:

 $\mathbf{U} = \mathbf{T} + (\mathbf{U}_{\mathbf{O}} - \mathbf{T})\mathbf{e}^{\mathbf{k}\mathbf{t}}.$

(Round your answer to the nearest whole minute.)

- 56) A cup of coffee is heated to 194° and is then allowed to cool in a room whose air temperature is 72°. After 11 minutes, the temperature of the cup of coffee is 140°. Find the time needed for the coffee to cool to a temperature of 102°.
- 57) The logistic growth model P(t) = $\frac{1240}{1 + 40.33e^{-0.325t}}$ represents the population of a bacterium in a culture tube

after t hours. What was the initial amount of bacteria in the population?

58) The logistic growth model P(t) = $\frac{180}{1 + 44e^{-0.188t}}$ represents the population of a species introduced into a new

territory after t years. When will the population be 80?

59) A life insurance company uses the following rate table for annual premiums for women for term life insurance. Use a graphing utility to fit an exponential function to the data. Predict the annual premium for a woman aged 70 years.

Age35404550556065Premium\$103\$133\$190\$255\$360\$503\$818

60) After introducing an inhibitor into a culture of luminescent bacteria, a scientist monitors the luminosity produced by the culture. Use a graphing utility to fit a logarithmic function to the data. Predict the luminosity after 20 hours.

 Time, hrs
 2
 3
 4
 5
 8
 10
 15

 Luminosity
 77.4
 60.8
 54.5
 45.8
 30.0
 24.3
 10.5

61) A mechanic is testing the cooling system of a boat engine. He measures the engine's temperature over time. Use a graphing utility to fit a logistic function to the data. What is the carrying capacity of the cooling system? <u>time, min |5 10 15 20 25</u> temperature, °F 100 180 270 300 305

Answer Key Testname: CHAPTER4

10) 15 students, 9 hours

Answer Key Testname: CHAPTER4

Answer Key Testname: CHAPTER4

