1) City B is located at 75 miles west and 25 miles north of city A. City C is located at 100 miles east and 125 miles south of city A. Find the distance between city B and city C. You can choose city A as the origin of the rectangular coordinate system. Write your answer rounded to two decimal places, if necessary.
(5 Points)
$\beta_{0}=(-75,25)$

$$
C=(100,-125)
$$

$$
B C=\sqrt{(100--75)^{2}+(-125-25)^{2}}=230.49 \text { miles }
$$

2) Find the standard form of equation of a circle with endpoints of a diameter at

$$
(x-2)^{2}+(y-6)^{2}=18
$$

3) If $(a, 2 a)$ is a point on the graph of $3 x-2 y=17$, what is a ?

$$
\begin{aligned}
& 3(a)-2(2 a)=17 \\
& 3 a-4 a=17 \\
& -a=17 \Rightarrow a=-17
\end{aligned}
$$

4) Find the x and y intercepts of the following $5 x^{2}+6 x-8-y=0$

To find x intercept let $y=0$

$$
5 x^{2}+6 x-8=0
$$

$$
(5 x-4)(x+2)
$$

$$
x=\frac{4}{5}, x=-2
$$

$\left(\begin{array}{l}\left(\frac{4}{5}, 0\right) \\ (-2,0)\end{array}\right]$
te find y intercept let $x=0$

$$
\begin{gathered}
5(0)^{2}+6(0)-8-y=0 \\
y=8
\end{gathered}
$$

yintercept $=(0,8)$

$$
\begin{aligned}
& \text { - hus }=\sqrt{(5,9) \text { and }(-1,3)} \quad C_{\text {enter }}^{(5-2)^{2}+(9-6)^{2}}=\left(\frac{5+-1}{2}, \frac{9+3}{2}\right)^{\text {(5PPoins) }}=(2,6) \\
& { }^{n} \operatorname{lin}=\sqrt{(5-2)^{2}+(9-6)^{2}}=\sqrt{9+9}=\sqrt{18}
\end{aligned}
$$

5) An open box yrith a square base is required to have a volume of 50 cubic feet. Express the amount A of material used to make such a box as a function of the length x of a side of the base.

$$
\begin{aligned}
x^{2} y=50 & \Rightarrow y=\frac{50}{x^{2}} \\
A=x^{2}+4 x y & =x^{2}+4 x\left(\frac{50}{x^{2}}\right) \\
A & =x^{2}+\frac{200}{x} \quad x>0
\end{aligned}
$$

6) Find the center and radius of the circle with the given equation $4 x^{2}+4 y^{2}-24 x+16 y-20=0$ Divide by f

$$
\begin{gathered}
x^{2}+y^{2}-6 x+4 y-5=0 \\
x^{2}-6 x+9+y^{2}+4 y+4=5+9+4 \\
(x-3)^{2}+(y+2)^{2}=18
\end{gathered}
$$

(5 Points)

$$
\begin{aligned}
& \text { Center }=(3,-2) \\
& \text { radius }=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Solve
7)
$1-\frac{9}{5 x}=\frac{7}{3} \quad$ Multiply by $15 x$

$$
\begin{aligned}
& 15 x(1)-15 \times \frac{9}{5 x}=15 \times \frac{7}{3} \\
& \begin{array}{l}
15 x-27=35 x
\end{array} \\
& -27=20 x
\end{aligned}
$$

$$
x=\frac{-27}{20}
$$

8) Find the average rate of change for the function $f(x)=4 x^{3}-5 x+2$

$$
\begin{array}{ll}
\frac{x}{-4}-234 & \text { Avg Rate of } \begin{array}{ll}
x & -4 \text { to } x \\
x & 4 x^{3}-5 x+2
\end{array} \\
& =\frac{4 x^{3}-5 x+5 x+2-(-234)^{3}}{x-(7 \text { points) }} \\
\text { Algebraically Solve: } & =\frac{46}{x+4}
\end{array}
$$

$$
\begin{aligned}
& \text { Algebraically Solve: } \\
& \text { 9.) } \sqrt{2 x+3}-x+10=10 \\
& \sqrt{2 x+3}=x \\
& 2 x+3=x^{2}
\end{aligned}
$$

(6 points)

$$
x^{2}-2 x-3=0
$$

$$
(x-3)(x+1)=0
$$

$$
x=3
$$

Extraneous solution

10) David has available 900 yards of fencing and wishes to enclose a rectangular area (5 points Each)
a) Express the area A of the rectangle as a function of the width x of the rectangle.

$$
\begin{aligned}
2 x+2 y=900 & \Rightarrow x+y=450 \\
A=x y=x(450-x)= & \frac{y 50 x-x^{2}}{450-x}
\end{aligned}
$$

b) What is the domain of A ?

$$
0<x<450
$$

11) Write an equation of the line passing through the point $(6,5)$ and perpendicular to the line

$$
\begin{aligned}
& 5=\frac{-1}{3}(6)+b \\
& 5=-2+b \\
& 7=b
\end{aligned}
$$

12) Use long division method and perform $3 x^{3}+2 x^{2}-x+3$ divided by $x+3$

$$
\begin{aligned}
& x+3 \sqrt{3 x^{3}+2 x^{2}-x+3} \\
& \frac{\theta_{3 x^{3}}+9 x^{2}}{-7 x^{2}-x} \\
& \text { Quotient }=3 x^{2}-7 x+20 \\
& \text { Remainder }=-57 \\
& \frac{\stackrel{\oplus}{-}-7 x^{2} \oplus 21 x}{20 x+3} \\
& \theta_{20 \times} \times 60 \\
& \frac{-57}{-3}
\end{aligned}
$$

13) Each month a gas station sells x gallons of gas at $\$ 2.99$ per gallon. The cost to the owner of the gas station for each gallon of gas is $\$ 1.99$, and the monthly fixed cost for running the gas station is $\$ 27000$.
a) Find the cost function. (Hint :-Cost $=\forall a r i a b l e-G o s t+$ Fixed Cost)

$$
\cos t=1.99 x+27000
$$

b) Find the revenue function. (Hin:-Rovenue = Price * Quantity)

$$
=2.99 \times
$$

c) Write an equation that relates the monthly profit, in dollars, to the number of gallons of gasoline sold. (Hint: Profit $=$ Revenue - Cost)

$$
P=2.99 x-(1.99 x+27000)=1 x-27000
$$

d) If the monthly profit is $\$ 113000$, find the number of gallons of gas that are sold in that month.

$$
\begin{gathered}
113000=1 x-27000 \\
140000=x \\
\text { Gallons }
\end{gathered}
$$

14) A wire of length $10 x$ is bent into the shape of a circle. points)
a) Express the circumference of the circle as a function of x.

$$
\begin{aligned}
& C(x)=10 x \\
& 2 \pi r=10 x \Rightarrow r=\frac{10 x}{2 \pi}=\frac{5 x}{\pi}
\end{aligned}
$$

b) Express the area of the circle as a function of x.

$$
A=\pi r^{2}=\pi\left(\frac{5 x}{\pi}\right)^{2}=\frac{25 \pi x^{2}}{\pi^{2}}=\frac{25 x^{2}}{\pi}
$$

15) Find the value of $\frac{f(x+h)-f(x)}{h}$ assuming h is not zero for the function $f(x)=4 x^{2}-5$

$$
f(x+h)=4(x+h)^{2}-5=4\left(x^{2}+2 x h+h^{2}\right) \overline{\text { (10 oms) }}
$$

(Clearly state each of the steps of the process.)

$$
f(x+h)=4 x^{2}+8 x h+4 h^{2}-5
$$

$$
f(x+h)-f(x)=4 x^{2}+8 x h+4 h^{2}-5-\left(4 x^{2}-8\right)=h(8 x+4 h)
$$

$$
\frac{f(x+h)-f(x)}{h}=\frac{k(8 x+4 h)}{h \quad 4}=8 x+4 h
$$

16) Given $f(x)=-4 x^{2}+5 x+35$. Find x such that $f(x)=15$

$$
\begin{aligned}
& -4 x^{2}+5 x+35=15 \\
& -4 x^{2}+5 x+20=0 \\
& 4 x^{2}-5 x-20=0
\end{aligned}
$$

17) Give the domain of the function.
a) $f(x)=3 x^{2}+\frac{2}{x-7}+5$

Domain is all Reals except 7
c) $f(x)=\frac{x+7}{x^{2}+x-42}=\frac{x+7}{(x+7)(x-6)}$

Domain is all Reals except -7 and b
18) Use Quadratic formula to solve the following: $4 x^{2}+12 x=-2$
(10 points)
b) $\quad f(x)=\sqrt{-5 x+10}$

$$
\begin{gathered}
-5 x+10 \geqslant 0 \\
-5 x \geqslant-10 \\
x \leqslant 2
\end{gathered}
$$

d) $\quad g(x)=\frac{x}{\sqrt{5-2 x}}$

$$
\begin{gathered}
5-2 x>0 \\
-2 x>-5 \\
x<\frac{5}{2}
\end{gathered}
$$

$$
\begin{aligned}
& 4 x^{2}+12 x+2=0 \\
& \begin{aligned}
& x=\frac{-12 \pm \sqrt{(12)^{2}-4(4)(2)}}{8}=\frac{-12 \pm \sqrt{112}}{8} \\
&=\frac{-12 \pm 4 \sqrt{7}}{8}=\frac{-3}{2} \pm \frac{\sqrt{7}}{2} \\
& x \operatorname{li}^{2} \rightarrow-0.177 \\
& 5
\end{aligned}
\end{aligned}
$$

19) Let $P=(x, y)$ be a point on the graph of $y=2 x^{2}-8\left(x, 2 x^{2}-8\right)$ points)
a) Express the distance d from P to the origin as a function of x.

$$
d=\sqrt{(x-0)^{2}+\left(2 x^{2}-8-0\right)^{2}}=\sqrt{x^{2}+\left(2 x^{2}-8\right)^{2}}
$$

b) What is d if $x=0$? $\quad d(0)=\sqrt{0^{2}+(-8)^{2}}=8$
c) What is d if $x=1$?

$$
d(1)=\sqrt{1+(-6)^{2}}=\sqrt{37}
$$

d) For what values of x is d smallest?

$$
x= \pm 1.97
$$

* Shift Rut 2

20) The graph of $y=f(x)$ is given below;

x	y
-6	0
-3	-3
	0
3	3
6	0

21) Extra Credit (10 points)

Two cars are approaching an intersection. One is 2 miles north of the intersection and is moving at a constant speed of 50 miles per hour. At the same time, the other car is 3 miles west of the intersection and is moving at a constant speed of 35 miles per hour.

Express the distance d between the cars as a function of time t.

$$
d=\sqrt{(2-50 t)^{2}+(-3+35 t)^{2}}
$$

b) At time $t=1$ Hour, what is the distance between the cars?

$$
d=\sqrt{(2-5)^{2}+(-3+35)^{2}}=57.69 \text { miles }
$$

