Professor Fred Katiraie Calculus I Quiz Seven Name: $\qquad$ Fall 2006

1. Given the function $f(x)=e^{-x^{2}} \quad,-3 \leq x \leq 3$

Estimate the area under the graph of $f(x)$ using six (hint: $\mathrm{n}=6$ )approximating rectangles and taking the sample points to be:
(2 Pts Each)
a) right endpoints
b) left endpoints
c) midpoints
2. Use the Midpoint Rule with the given value of $n$ to approximate the integral. Round your answer to four decimal places. (2 Pts)

$$
\int_{1}^{2} 5+\sqrt{2-x^{2}} d x
$$

$$
n=5
$$

3. If $\int_{8}^{2} f(x) d x=-0.7$ and $\int_{5}^{8} f(x) d x=2.5 \quad$ and $\int_{2}^{5} g(x) d x=8$

Evaluate the following (if possible; otherwise, indicate N/A as your answer)
(2 pts each)
a) Find $\int_{2}^{5} f(x) d x$.
b) Find $\int_{2}^{5} f(x) g(x) d x$
c) Find $\int_{2}^{5} \frac{f(x)}{g(x)} d x$
4. If $\int_{a}^{3} 3 x^{2} d x=37, \quad$ find the value of "a". (3 points)
5. Consider the graph of the function $f(x)$ and


Using geometry compute the following:
a) $\int_{0}^{1} f(x) d x$
b) $\int_{1}^{3} f(x) d x$
c) $\int_{0}^{4} f(x) d x$

