1) Differentiate the following functions:

A)
$$f(x) = e^{2x} \csc x$$

B)
$$y = \frac{\cot x}{1 + \sec x}$$

c)
$$f(\theta) = \frac{1 + \sin 2\theta}{\theta + \sin 3\theta}$$

D)
$$f(\theta) = \sqrt[5]{1 + \tan \theta}$$

2) Algebraically find the following $\frac{d}{dx}(\csc x)$ using the methods discussed in class.

- 3) Find the equation of the tangent line to the curve $y = e^{2x} \sin x$ at the point $\left(\frac{\pi}{2}, e^{\pi}\right)$ (2 Points)
- 4) A table of values for f, g, f, and g is given:

(2 Points each)

X	f(x)	g(x)	f(x)	g (x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

- a) If F(x) = f(g(x)), find F'(1)
- b) If G(x) = g(f(x)), find G'(1)
- 5) Find the equation of the tangent line to the curve $x = 2\sin 2t$ $y = 2\sin t$ at the point $(\sqrt{3}, 1)$

6) Find the equation of the tangent to the circle $x^2 + y^2 = 4$ at the point (0, -2).