Name:

1) Prove that $\frac{d}{d x}(2 \csc x)=-2 \csc x \cot x$
2) If $f(x)=-2 e^{x} g(x)+5 x$, where $g(0)=4$ and $f^{\prime}(0)=6$, find $g^{\prime}(0)$.
3) Differentiate the following functions:
(2 Points)
A) $\quad f(x)=\frac{x^{3}+4 x+3}{\sqrt{x}}$
B) $y=\frac{-2 \cos x}{1-\sin x}$
4) Find the equation of the tangent line to the curve $y=-e^{x} \cos x$, at the point $(0,-1)$.
5) Find the equation of the tangent line to the curve $y=-2 \cos x$ at the point $\left(\frac{\pi}{4},-\sqrt{2}\right)$
(2 Points)
6) Given that $v(x)=\frac{f(x)}{g(x)}$, and $w(x)=f(x) g(x)$
(3 Points) And graphs of $f(x)$
and
$\mathrm{g}(\mathrm{x})$

Find the following:
$v^{\prime}(0)$
$w^{\prime}(2)$
$w^{\prime}(1)$
7) The position of a particle is given by the equation $S(t)=\frac{t^{3}}{3}-\frac{3 t^{2}}{2}+2 t$, where " t " is measured in seconds and " S " is in meters.
a) When is the particle at rest?
b) When is the particle speeding up?
8) Find the equation of the tangent line to the curve $y=x \cos x$, at the point $(\pi,-\pi)$
(2 Points)
9) Find all values of x so that the graph of $f(x)=x-2 \sin x$ will have a horizontal tangent?

