Calculus I;
Professor Katiraie
Quiz Three

Name: \qquad Date: \qquad
1)

$$
f(x)=\left\{\begin{array}{l}
x^{3}+2 ; x \leq-1 \\
x^{2}+x+1 ;-1<x<1 \\
x^{4}+2 ; x \geq 1
\end{array}\right\}
$$

Find the following limits
(4 Points)
a) $\lim _{x \rightarrow-1^{-}} f(x)$
b) $\lim _{x \rightarrow-1} f(x)$
c) $\lim _{x \rightarrow 1^{+}} f(x)$
d) $\lim _{x \rightarrow 1} f(x)$
2) Algebraically find the following limits. (please show all your work, you may verify your answer with your calculator, but for credit you must do this problem algebraically):

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t+2}-3}{t-7}
$$

(3 Pts)
$\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}$
3) Given $f(x)=\left\{\begin{array}{l}2 x^{3}+16 ; x \leq-2 \\ x^{2}+b x+c ;-2<x<2 \\ 3 x^{4}-48 ; x \geq 2\end{array}\right\}$
(3 Pts)

Determine the values for b and c so that $f(x)$ is continuous everywhere.
4) Use the intermediate Value Theorem to show that there is a root for the equation $x^{3}+2 x^{2}-42=0$ on the interval $(0,3)$.
$\lim _{x \rightarrow \infty} \frac{-x-2+9 x^{2}}{3 x^{2}+4 x+1}$

